Домой Общепит Механизация водоснабжения комплекса крупного рогатого скота. Ремонт машин и оборудования животноводческих ферм Технологический и гидравлический расчеты

Механизация водоснабжения комплекса крупного рогатого скота. Ремонт машин и оборудования животноводческих ферм Технологический и гидравлический расчеты

Чтобы напоить коров и приготовить им корм, надо организовать грамотное водоснабжение коровника. Сегодня в животноводческих хозяйствах вода также используется для санитарной обработки доильных аппаратов, молочных резервуаров и посуды, подмывания вымени, мытья коров, уборки помещений. Бесперебойное водообеспечение хозяйства – это одно из главных условий для производства молока. Именно поэтому очень важно правильно спроектировать и качественно установить водопровод для хозяйственного комплекса.

Схемы водообеспечения коровника

Системы водоснабжения животноводческих ферм – это совокупность различных устройств и инженерных объектов, необходимых для добычи, перекачивания, сохранения и доставки необходимой жидкости к коровнику. Локальные коммуникации (обладают собственным водоисточником, насосными устройствами и водопроводом) применяются для централизованного водообеспечения животноводческих комплексов, а групповые – для обслуживания нескольких крупных сооружений, связанных общей территорией.

Водоснабжение фермы КРС представляет собой источник жидкости, водозаборный объект, насосные установки, внешнюю и внутреннюю водопроводные сети. Зачастую схема дополняется фильтрами либо другим оборудованием, очищающим воду.

В напорных водопроводах жидкость подается насосным оборудованием, в самотечных системах главный элемент (источник) размещен выше уровня расположения коровника.

Для водообеспечения животноводческих ферм и комплексов применяются локальные и централизованные типы, имеющие подземные водоисточники и противопожарные емкости с запасом жидкости.

Определение схемы наружного водопровода

В фермах есть наружный водопровод, который прокладывается вне здания, и внутренний – непосредственно распределяющий воду к хозяйству. Внешняя сеть бывает тупиковой, где от основной магистрали отводятся в различные стороны коммуникации, по которым жидкость движется в одном направлении.

Также используется кольцевая схема, представляющая собой трубопровод с замкнутым контуром, в котором вода к животноводческому хозяйству подается с обеих сторон.

Основным достоинством тупиковой системы, рассчитанной на фермерское хозяйство, является небольшая протяженность, что позволяет снизить расходы на прокладку. Главный недостаток в том, что в случае аварийной ситуации понадобится отключать от водоснабжения весь коровник. Использование кольцевой схемы на ферме дает возможность отремонтировать поврежденные участки без прекращения подачи жидкости к хозяйству. Существенным недостатком является большая длина трубопроводов и увеличенные в связи с этим расходы.

Учитывая меньшие затраты на монтаж и эксплуатацию, многие предпочитают именно тупиковую схему водообеспечения. Она чертится на плане с учетом наименьшей протяженности трассы и количества узлов разветвления. Этот расчет предполагает, что на всех участках идут 2 потока с соответствующим потребительским расходом.

Технологический и гидравлический расчеты

Вода в коровниках требуется для технологических, хозяйственных, гигиенических нужд, а также без нее не обходится наружное противопожарное водоснабжение.

Осуществляя расчет нужного количества жидкости для животноводческого комплекса, сначала стоит вычислить среднесуточный расход запасов. В зависимости от количества содержащихся коров и норм водопотребления, которые установлены для данных хозяйств, зависит то, как снабжаются хозяйства жидкостью. После этого определяют максимальное потребление воды с учетом коэффициента суточной неравномерности (потому как данная величина применяется для дальнейших вычислений).

В зависимости от разных условий суточный расход жидкости в коровнике может доходить до нескольких сотен кубометров. Расчет системы водопровода необходимо выполнить таким образом, чтобы сеть обеспечивала качественное снабжение водой для поения крупного рогатого скота, потому как ее недостаток мгновенно вызовет снижение производительности.

Согласно СНиПам существуют определенные нормы водопотребления (измеряется литрами в сутки). К примеру, для:

  • коров – 70;
  • бычков – 45;
  • молодых коров до 2-х лет – 35;
  • телят до полугода – 25.

Гидравлический расчет водоснабжения позволяет определить диаметр трубопровода и снижение напора в результате преодоления сопротивления в трубах при пропуске по ним необходимого количества жидкости. Определить данный показатель понадобится для того, чтобы выяснить, какую высоту должна иметь водонапорная башня, и какие технические характеристики насосное оборудование.

Механизация водообеспечения хозяйства

Организации водоснабжения для животноводческих ферм требует значимых затрат человеческого труда. Расчет показывает, что для доставки 1 куб. м воды и распределения ее коровам без механизации потребуется около 5-6 чел./ч., а в случае автоматизации – 0,04-0,05 чел./ч. Из этого видно, что переход на инновационные технологии дает возможность снизить трудозатраты в разы.

Требуемый напор в сети создается при помощи насосного оборудования, доставляющего воду из источника в сборные емкости либо очистные сооружения. После этого насосы закачивают жидкость в башню и далее – к водопроводам в сеть.

Для выкачивания воды из разных типов источников (более глубоких или поверхностных) применимы различные механизмы. Выбор того или иного вида, определение мощности зависит от глубины водоисточника, его дебита и количества требуемой для хозяйств жидкости. Водоподъемные устройства бывают ручные, работающие от мотора и самодействующие.

В водоснабжении коровников применяются ручные, приводные поршневые и центробежные насосы, компрессорные установки, гидравлические тараны.

Механизация водоснабжения способствует сокращению трудозатрат, увеличению производительности и созданию требуемых санитарных условий в помещениях коровника.

Водонапорные башни и резервуары

Водонапорные башни обеспечивают требуемый напор в общей сети, с их помощью регулируется подача воды, решается вопрос хранения ее запасов. Для этого используют подземные резервуары, – из них потом жидкость попадает в трубопроводы при использовании насосов.

В животноводстве на фермах чаще всего применяют бесшатровые башни-колонны, выполненные из металла. Они производятся с различной вместимостью (до 50 куб. м.) и высотой (10-30 м). Колонну сооружения также заполняют водой. Вследствие этого реальные запасы намного больше, чем указано в паспорте оборудования.

Сельское хозяйство предполагает обязательное наличие запаса водных ресурсов, которые должны быть под рукой в случае возникновения пожара (должны находиться в наземных или подземных безнапорных резервуарах). Воду из них подают специальными пожарными насосами. При отсутствии таких емкостей жидкость берут из водоемов или рек.

Согласно нормативам, водонапорный бак должен поместить в себе такой запас, которого будет достаточно на 10 минут работы пожарных кранов параллельно со стандартным расходованием для остальных нужд.

Применение оборудования для поения коров

Ферма не обходится без поилок. Данные приборы неизменно применяются для выпаивания коров. Присутствует непосредственный контакт с КРС, поэтому изделия должны выполняться с учетом анатомических особенностей животных. Автопоилки представляют собой специализированные устройства, благодаря которым КРС сам снабжается питьевой водой из водопровода.

Использование специального оборудования для поения КРС в животноводческих комплексах дает возможность увеличить удой на 15-20% и существенно снизить трудозатраты персонала на обслуживание животных.

Индивидуальные автопоилки используют на коровьих фермах, где преобладает привязное содержание. Групповые устройства применяются для коров, которые содержатся беспривязным способом. Такое оборудование бывает стационарным либо передвижным. Последний вид применяется во время выпаса рогатого скота.

Для свинарников используются автопоилки, оснащенные специальным клапаном (шаровым), помещенным в специальный резервуар. Корыто для приспособления выполняется с крышкой, которая предохраняет емкости от загрязнения. Когда свинья пьет воду, то ее уровень в корыте снижается, параллельно движется клапан и открывает отверстие трубопровода. Он же снова наполняет корыто.

Прокладка внутреннего водопровода на ферме

Внутренняя система водоснабжения на ферме начинается со стояка, от которого идет разветвление трубопроводов. В размещенное при хозяйстве кормоприготовительное помещение подводят воду к важным приборам (парообразователь, водонагреватель, корнемойка, плодомойка), к стойлам – автоматические поилки, краны для полива.

Прокладка трубопровода, ведущего непосредственно к автопоилкам, выполняется по траектории расположения кормушек (должна выдерживаться высота 160 см от пола). К каждой поилке по стойке подведена труба (ее диаметр 25 мм). Данные ответвления присоединяются к трубопроводу с помощью особых крепежей, а снизу прикручиваются к тройнику устройства для выпаивания. В проходах на высоте 2,5 м от уровня пола делаются переходы в форме буквы «П».

Применение автопоилок – продуманный шаг водоснабжения для животноводческих ферм. Коровы постоянно получают чистую воду, пьют ее по собственной потребности. Качественные запасы предохранят рогатый скот от желудочно-кишечных болезней, а постоянное употребление жидкости способствует улучшению состояния животных и существенному росту продуктивности предприятия.

Вам понравилась эта статья? Мы, будем рады участию, если вы поделитесь ссылкой с друзьями.

Вам также может быть интересно

Фильтрационное оборудование на животноводческих фермах используется не только в качестве источника питьевой воды, но и для поддержания требуемого уровня противопожарной подготовки и для очистки сточных вод, загрязненных продуктами жизнедеятельности крупнорогатого скота или птиц.

На фото: установка водоподготовки “Jalshuddhi” – Animal Husbandry.

В развитии животноводческих и рыбных хозяйств очень важное место занимает организация системы водоснабжения и водоотведения. Как правило, фермы располагаются на значительном расстоянии от города, поэтому возможность использования центрального водопровода в качестве источника питьевой воды сведена к минимуму. Как осуществляется водоподготовка животноводческих комплексов? И в чем отличие фильтров для сточных вод, поступающих с мясоперерабатывающих предприятий и птицефабрик?

Виды систем очистки воды в животноводстве

Системы водоснабжения животноводческих ферм и комплексов обязаны обеспечивать подачу воды в необходимых количествах и соответствующего нормам и стандартам качества. Расчетные размеры водопотребления определяются в соответствии с общим расходом воды, определяемом как сумма трех показателей (рис1)

Рис. 1. Система водоподготовки для животноводческих комплексов

Расчетный расход воды на противопожарные нужды в зависимости от количества голов скота колеблется от 5 до 20 литров в секунду (при возникновении необходимости трехчасового тушения пожара). Стотысячный комплекс по производству свинины требует от 3000 кубометров воды в сутки. Суточная норма десятитысячной фермы достигает 600 куб. метров жидкости в сутки. Объем сточных вод с учетом воды, используемой для чистки и уборки помещений, условно можно приравнять к ежедневному расходу питьевых ресурсов.

Таблица 1. Среднегодовой расход свежей воды (в куб. метрах) на 1 т. Перерабатываемого сырья

Мощность мясокомбината (тонн в смену)

Среднегодовой расход свежей воды (на 1 тонну перерабатываемого сырья)

Источники водоснабжения

В качестве источника водоснабжения для животноводческих ферм могут выступать колодцы, артезианские скважины и поверхностные воды. Для небольших комплексов с расходом воды до 40 кубометров в сутки рациональнее всего использовать расположенные близко к поверхности земли подземные воды, перекачиваемые насосными установками через шахтные колодцы.

Артезианская скважина подходит для организации водоснабжения крупных животноводческих ферм. В этом случае расход на организацию водозабора компенсируется выгодой от использования менее мощных фильтров для питьевой воды (исключение составляет обезжелезиватели ).

Фильтрация (аэрация) поверхностных вод – главный этап организации водоподготовки рыбхозов.

Выбор очистных сооружений для животноводческих комплексов зависит от специализации предприятия. Фермы, занимающиеся птице- и мясопереработкой вынуждены дополнительно устанавливать обезжириватели, а также системы очистки от аммиака, взвешенных веществ, условно патогенных и патогенных микроорганизмов. (3, 4)

Используемые источники:

1. Кириллов Н.K. (Чувашская гос. с.-х. акад.). Ветеринарно-санитарный контроль состояния животноводческих объектов Состояние и проблемы ветеринарной санитарии, гигиены и экологии в животноводстве

2. Костенко Ю.Г. Ветеринарно-санитарный контроль при переработке мясного сырья.

3. Санитарные правила и нормы СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод"

4. Санитарные правила и нормы [Для предприятий пищевой и перерабатывающей промышленности]. -2 изд., с изм., и доп.

Строительство и эксплуатация в республике крупных ферм с бесподстилочным содержанием животных и гидравлической уборкой навоза привело к резкому обострению экологической обстановки в районах их расположения. Это обусловило необходимость проведения контроля качества воды, потребляемой на фермах на хозяйственно-питьевые нужды. В системе охраны здоровья животных проблема контроля качества питьевой воды наряду с контролем качества кормов должна занимать особое место. Официальная статистика, публикуемая органами государственного контроля, показывает, что 25% всех проб питьевой воды по химическим показателям и около 10% по микробиологическим не соответствует гигиеническим нормам.
Увеличение производства продукции животноводства в стране предусматривается главным образом за счёт внедрения интенсивных технологий и новой техники, повышения продуктивности скота, а также широкого использования различных форм хозяйствования.
Создание новых машин и оборудования должно основываться на строго научном подходе, для комплексной механизации сельскохозяйственного производства.
Внедрение в производство новой системы машин позволит уменьшить эксплуатационные издержки на получение продукции животноводства на 20.25% снизить прямые затраты труда в 1,5.1,9 раза по сравнению с уровнем достигнутым в хозяйствах страны.
В водоснабжении широкое распространение получают автоматизированые установки с пневморегуляторами и применением современного регулируемого электропривода насосных агрегатов, обеспечивающих высокое качество и надёжность подачи воды на фермы при минимальных затратах на техническое обслуживание.
Цель исследования – установление особенностей водообеспечения фермы крупного рогатого скота, качества воды и источников водоснабжения.
    ОБЩИЕ СВЕДЕНИЯ ПО ТЕМЕ И ЕЕ ОБОСНОВАНИЕ
Животноводство является наиболее крупным потребителем воды в сельской местности, на его долю в республике приходится около 30% от общего забора питьевой воды в сельском хозяйстве. На производство 1 т молока расходуется не менее 3 м3 свежей воды, 1 т говядины – 30 м3, свинины – 88 м3, общее потребление воды зависит от специализации ферм, их мощности и уровня механизации производственных процессов, системы и способа содержания животных, технологии производства.
Водный баланс фермы или комплекса зависит от глубины скважины и производительности водоподъемного оборудования. При глубине скважины от 40 до 80 м для подъема 1 м3 воды необходимо затратить от 0,9 до 1,0 кВт электроэнергии.
Правильная организация водоснабжения имеет исключительное значение для эффективной работы фермы, т.к. обеспечивает нормальное выполнение производственно-зоотехнических процессов и противопожарную безопасность, улучшает условия содержания животных, повышает производительность и культуру труда обслуживающего персонала, увеличивает продуктивность животных, улучшает качество продукции и снижает ее себестоимость.
Качество воды в зависимости от назначения должно удовлетворять определенным требованиям.
Система водоснабжения – это комплекс взаимосвязанных машин, оборудования и инженерных сооружений, предназначенных для забора воды из источников, подъема ее на высоту, очистки, хранения и подачи к местам потребления.
В зависимости от особенностей каждой водопроводной сети можно рекомендовать соответствующий тип аппаратуры автоматического управления насосной станции.
Отечественная промышленность производит полностью укомплектованные автоматические водоподъемные установки, не требующие постоянного наблюдения. Полностью решены принципиальные вопросы, связанные с созданием автоматизированных систем управления крупными объектами сельскохозяйственного водоснабжения с использованием ЭВМ.
В настоящее время для подъема воды из шахтных колодцев и открытых водоемов применяется различное оборудование: консольные насосы типа К и КМ, водоструйные, ленточные, шнуровые и пневматические установки.
Это оборудование имеет большую металлоемкость и не всегда удовлетворяет эксплуатационным требованиям. Для забора воды из открытых источников необходимо устанавливать водоподъемные сооружения.
Для шахтных колодцев разработаны конструкции плавающих насосов: ПН-25 и ППН-25. Однако многоступенчатость расположения нагнетательного патрубка ограничивает применение таких насосов в шахтных колодцах с небольшим слоем воды.
Использование электродвигателей нормальной серии АОП, в колодцах ввиду повышенной влажности значительно снижает надежность этих установок. Перечисленных недостатков лишены малоблочные насосы с водозаполненными электродвигателями и нормальной или повышенной частотой вращения. Преимущество таких насосов: небольшая масса и размеры, более интенсивное охлаждение двигателя перекачиваемой водой: работа подшипников в чистой воде, заливаемой в полость электродвигателя, что увеличивает срок их службы, возможность избежать строительства водозаборных сооружений и зданий насосных станций.
Животные должны получать воду хорошего качества, в достаточном количестве и в любое время суток. Общий расход воды определяется видом и числом животных, суточными нормами поения и характером производственных процессов.
В разное время года и разное время суток расход воды разный, он зависит от способа содержания животных, погодных условий, рациона кормления. При использовании системы водоснабжения, на животноводческих объектах устанавливаются расходы воды за сутки, часы, секунды и в отдельные периоды за год.
По величине суточного расхода воды определяется годовое потребление и себестоимость 1 кубического метра воды, по максимальному расходу, требуемые емкости резервуаров, мощности насосных установок, размеры очистных сооружений.
Суточная потребность ферм и комплексов в воде (без учета расхода на пожарные нужды, часовой и суточной равномерности) обычно велика, поэтому необходимо обеспечить постоянную работоспособность системы водоснабжения. Для поения взрослых животных используется вода с температурой 12-14°С, молодняка – 15-16°С, в холодный период требуется подогрев воды. Качество питьевой воды предоставлено в таблице:
Таблица 1

Таким образом, разработка механизированной и автоматизированной поточно-технологической линии водоснабжения и автопоения животноводческих предприятий является одним из основных условий получения высококачественной продукции животноводства.
    ХАРАКТЕРИСТИКА ЖИВОТНОВОДЧЕСКОЙ ФЕРМЫ
Животноводческая ферма - это специальное сельскохозяйственное предприятие, предназначенное для производства продукции животноводства.
Комплексы по откорму свиней необходимо размещать на ровной с небольшим уклоном территории, имеющей склон для дождевых и талых вод.
Участок должен размещаться с подветренной стороны относительно к господствующим ветрам и находящийся на расстоянии не менее 300м от населенного пункта.
Ферма располагается по рельефу, ниже жилого сектора, а в пределах ее территории производственные постройки возводятся ниже вспомогательных. Предусмотрены зеленые насаждения по границе фермы, между отдельными зданиями, а также вдоль дорог, которые подходят к ферме.
В данном курсовом проекте рассматривается свиноводческая ферма для содержания в нем единовременно 6000 голов откормочного молодняка - поросята – 2100 гол., 1 период откорма – 1950 гол., 2 период откорма – 1700 гол.
Технологическим процессом предусматривается через 10 дней (ритм производства) поступление группы поросят из станков или свинарника для поросят-отъемышей в возрасте 100 дней со средней живой массой 28 кг. Среднесуточный привес на откорме предусмотрен 450 грамм. Общий привес за период откорма 84 кг за 186 дней. При достижении живой массы 112 кг в возрасте 9-10 месяцев откормленные свиньи забиваются.
Содержание свиней безвыгульное в групповых станках размером 3900х5000 мм. Станки расположены в 2 ряда с 1-м совмещенными кормослужебными проходом. Станковая площадь на 1 голову 0,9-1,19м, фронт кормления 29 и 30,6 см. Освещение в свинарнике в дневное время естественное (1:10), в ночное – электрическое. В станках свиньи содержатся на подстилке из измельченной соломы. Пол имеет уклон к зоне дефекации 5%. Ограждение групповых станков из панелей высотой 1000 мм. Ограждение станков в зоне дефекации решетчатое и сплошное в зоне логова. Кормушки в станках железобетонные, групповые. В свинарнике предусмотрены помещения производственного и обслуживающего назначения.
Кормление откормочного молодняка осуществляется 27,3% концентрированными кормами, 60,6% корнеплодами и 12,1% комбисилосом.
Питательная ценность 1 кг корма принята усредненная:
Концентрированных кормов – 1,1 к.ед.;
Корнеклубнеплодов – 0,16 к. ед.;
Комбесилоса – 0,2 к. ед.
Кормление свиней 2-х разовое. Раздача кормов – мобильным электрифицированным кормораздатчиком КС-1,5.
Примерный рацион концентратно– картофельного типа для откорма свиней (на одну голову в сутки) представлен в таблице 2:
Таблица 2 – Примерный рацион концентратно–картофельного типа для откорма свиней (на одну голову в сутки)
Корм Живая масса свиней, кг
15-30 30-40 40-60 60-80 80-100
Зерновая смесь, кг 1,2 1,3 1,5 2,0 2,8
Обрат, кг 0,5 1,0 1,0
Картофель, кг 1,0 2,0 3,0 3,0 4,0
Мел, г 12 13 15 30 30
Соль поваренная, г 12 13 15 30 30

Автопоение свиней обеспечивается с помощью серийных бесчашечных (сосковых) автопоилок в расчете одна автопоилка в станке вместимостью до 25 поросят.
Навозные каналы расположены в станках и перекрыты железобетонными решетками, через которые навоз, протаптываемый животными, попадает в продольный самотечный канал и перемещается в навозонакопитель
Свинарник обслуживают 8 свинарей-операторовя.
Суточный режим труда и отдыха – односменный, двухцикличный, уплотненный; недельный – пятидневная рабочая неделя с 2-мя выходными днями. В обязанности операторов входит: кормление животных, уборка в станках и в помещении, перегон животных, участие в проведении ветработ и взвешивании, соблюдение санитарного порядка в производственном помещении.
    ОПИСАНИЕ РАЗРАБАТЫВАЕМОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА С ОБОСНОВАНИЕМ ВНОСИМЫХ ИЗМЕНЕНИЙ
При организации водоснабжения важно правильно выбрать источник воды.
Источниками водоснабжения могут служить поверхностные (открытые) и подземные (закрытые) водоемы.
Использование открытых водоемов допускается как исключение. Их делят на естественные (реки, озера, ручьи) и искусственные (пруды, каналы и др.). Поверхностные источники более доступны для водоснабжения. Однако вода этих источников часто требует очистки или обеззараживания, что значительно увеличивает ее стоимость. Особенно загрязнена вода у берегов. Поэтому место забора воды должно быть удалено от берега и по возможности расположено на большой глубине.
Как источники водоснабжения подземные воды имеют большое распространение. Как правило, они лучше поверхностных вод по качеству. Подземные (закрытые) источники могут быть двух видов: грунтовые и межпластовые. Воды, залегающие на глубине 40...50 м от поверхности земли (над первым водонепроницаемым слоем), называют грунтовыми. К грунтовым водам относят также подземные воды, залегающие на небольшой глубине (3...5 м от поверхности земли), которые часто называют "верховодками". Эти воды могут загрязняться просачивающимися с поверхности нечистотами. Воды, залегающие между двумя водонепроницаемыми слоями (пластами), называются межпластовыми. Межпластовые воды разделяют на безнапорные и напорные (артезианские). Напорные (артезианские) воды заполняют всю толщу водоносной породы и под давлением поднимаются в колодцах на большую высоту, а иногда и фонтанируют. Безнапорные воды залегают между двумя водонепроницаемыми слоями (пластами) породы, не полностью заполняют слой и имеют свободную поверхность.
Межпластовые воды (напорные и безнапорные) хорошо защищены от поверхностного загрязнения и обладают высокими вкусовыми качествами. Запасы межпластовых вод велики; температура их в течение года изменяется незначительно. Эти источники считаются наилучшими для водоснабжения в сельском хозяйстве.
В данном конкретном случае используется подземный грунтовый источник водозабора с глубиной скважины 39м и очистка воды.
Водозаборные сооружения служат для забора воды из источника. Для забора воды из поверхностных (открытых источников устраивают береговые колодцы или простейшие водозаборы, а для забора воды из подземных (закрытых) источников – шахтные, буровые (трубчатые) и мелко трубчатые колодцы.
Шахтные колодцы обычно сооружают при залегании подземных вод на глубине не более 40 м. Такой колодец представляет собой вертикальную выработку в грунте, врезающуюся в водоносный пласт, и состоит из шахты, водоприемной части и оголовка. Шахту делают квадратного сечения со стороной 1…3 м или круглой диаметром 1…3 м. Для крепления стен шахты применяют дерево, камень, бетон, железобетон, кирпич. Для вентиляции колодца служит труба. Дебит шахтных колодцев часто определяют способом откачки.
В сельскохозяйственном водоснабжении широкое распространение получили центробежные насосы. Они просты по конструкции, надежны и удобны в эксплуатации. Центробежные насосы применяют для подачи воды из открытых источников, шахтных и трубчатых колодцев. Центробежный насос состоит из всасывающего и напорного патрубков и лопастного рабочего колеса, жестко насаженного на вал, который вращается в спиралеобразном корпусе. При вращении рабочего колеса вода, увлекаясь лопастями, начинает вращаться вместе с колесом и под действием центробежной силы отбрасывается от центра колеса к периферии и далее через напорный патрубок в трубопровод водопроводной сети.
Для очистки воды применяют фильтры, контактные осветители. Для УФ-облучения воды применяют установки с органо-ртутными лампами типа БУВ. Эти установки выпускаются закрытого типа с погружением в воду источников облучения и открытого типа. Погружаемые в воду лампы размещают в кварцевых чехлах. Установки можно подключать в любом месте сети водоснабжения.
Сосковые автопоилки ПБП-1А (для поросят-сосунов и поросят-отъемышей) предназначены для поения животных водопроводной водой при индивидуальном и групповом содержании.
Чтобы напиться, животное берет в рот носок корпуса вместе с соском и нажимает на последний до упора в носок. При этом срабатывает надетый на резиновый амортизатор клапан и вода поступает в полость рта животного. При отпускании соска подача воды автоматически прекращается. Резиновые уплотнения и предотвращают подтекание воды при нейтральном положении соска.
Автопоилка устанавливается под углом 60°. Конец соска должен находиться на высоте от пола: для поросят-сосунов и поросят-отъемышей - 220-250 мм; для взрослого поголовья при содержании в групповых станках - 420-450 мм. Для предотвращения попадания в поилку грязи и других включений общая горизонтальная труба для подачи воды к поилкам должна располагаться ниже поилок. Тогда она выполняет и роль отстойника. Для спуска из этой трубы воды с осевшими загрязнениями на конце трубы устанавливают вентиль.
    ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ И ВЫБОР ОБОРУДОВАНИЯ
При выборе источника водоснабжения необходимо учитывать технико- экономические показатели: стоимость сооружений и оборудования для подъема, обработки и транспортировки воды, затраты на эксплуатацию и ремонт и др.
Например, стоимость 1м.куб. воды из источника поверхностного водоснабжения с устройством очистки примерно в 3-5 раз выше, чем стоимость воды из межпластовых источников, которую можно использовать без очистки. Источники водоснабжения выбирают с соответствии с требованиями ГОСТа и согласовывают с органами государственного санитарного надзора.
Определение потребности фермы в воде.
Автопоение.
Потребность фермы в воде на поение животных определяется наличием половозрастных групп животных. Среднесуточный расход воды определяется для отдельных потребителей по формуле:
Q сут.ср = ? qі mі (1)
qі - суточная норма расхода воды одним потребителем,
mі - число потребителей, имеющих одинаковую норму потребления.
Q сут.ср = 2100 * 15 + 1950 * 20 + 1700 * 20 = 104500л

Максимальный расход воды Q сут.max ., с учётом того, животные воду в течение суток потребляют неравномерно, определяется по формуле:
Q сут.max = Q сут.ср. * ? сут, (2)
где? сут – коэффициент суточной неравномерности водопотребления, ? сут = 1,3.
Q сут.max = 104500 * 1,3 = 135850л

Максимальный часовой расход воды Qч max определяется с учётом коэффициента часовой неравномерности? ч =2,5 по формуле:
Qч. max = ?ч * Q сут.max / 24 (3)
Qч. max = 2,5 * 135850 / 24 =14151л

Максимальный секундный расход равен:
Qc max = Q ч max / 3600 (4)
Qc max = 14151 / 3600= 3,93 л

Использование воды на технологические цели
Мойка корнеклубнеплодов
Q м.к. = ?mіkiqі (5)
Q м.к. = 5750 * 5 * 1,2 = 34500 л
Бытовые нужды
Q б.н. = np * kр (6)
Q б.н. = 8 * 50 = 400 л
где np – количество работников фермы
kр – норма расхода воды на одного работника в сутки, л
Неприкосновенный противопожарный запас
Неприкосновенный противопожарный запас Qп.з. определяется исходя из длительности тушения пожара в течение 10 минут из пожарных гидрантов с интенсивностью 10л/с:
Qп.з. = 10мин.*60с*10л = 6000л
Сложив все показатели получаем:
Qсут. = Q сут.max + Q м.к. + Q б.н. + Q п.з. (7)
Qсут. = 135850+ 34500 + 400 + 6000 = 176750л

Гидравлический расчет водопроводной сети
Для подачи воды на производственные и хозяйственно-питьевые нужды животноводческие хозяйства должны быть оборудованы водопроводной сетью. Различают внешнюю и внутреннюю водопроводную сеть.
Внешняя водопроводная сеть - это та часть распределительной сети, которая расположена на территории комплекса или фермы за пределами помещений. Она может быть разветвленной или кольцевой.
Разветвленная, или тупиковая сеть, состоит из отдельных линий. Вода из водонапорной башни проходит по главной магистрали с ответвлениями, которые заканчиваются тупиками. Таким образом, вода поступает к потребителю только с одной стороны. Тупиковая сеть применяется лишь на небольших фермах.
Кольцевая сеть обеспечивает движение воды по замкнутому кругу (кольцу) и подводит ее к потребителю с двух сторон. Кольцевая водопроводная сеть длиннее, чем соответствующая тупиковая, однако у нее имеется немало преимуществ: не застаивается вода, увеличивается пропускная способность сети и другие. Поэтому кольцевую сеть применяют чаще.
Внутренняя водопроводная сеть предназначена для непосредственного распределения воды между потребителями внутри зданий. Для бесперебойной подачи воды на производственные нужды эта сеть выполняется только кольцевой. В производственных зданиях крупных комплексов эту сеть присоединяют к кольцевой сети наружного водопровода двумя вводами раздельно.

Рис.1. Схема наружного водопровода
Расход воды в животноводческих хозяйствах в течение суток неравномерный, и приспособить работу насосных станций к изменениям потребления воды без дополнительных промежуточных резервуаров воды очень трудно. Поэтому при устройстве водопроводных сетей необходимо предусмотреть специальные сооружения для запаса воды на непрерывное питание потребителей.
По способу получения воды из этих сооружений они бывают напорно-регулирующие и безнапорные.
Напорно-регулирующие сооружения создают в водопроводной сети напор, необходимый для распределения нужного количества воды потребителям. К ним относят водонапорные башни и пневматические котлы. Водонапорные башни создают необходимый напор за счет поднятия водонапорного бака на необходимую высоту, а в пневматических котлах - за счет давления сжатого воздуха в пространстве, свободном от воды в герметически закрытом сосуде.
Безнапорные сооружения выполняют в виде подземных резервуаров, вода из которых подается насосами в водонапорную сеть, а затем потребителю.
Основываясь на исходных данных: водоснабжение комплекса по откорму свиней на 6 тыс. голов в год, шахтный колодец и башенная водокачка выбираем схему водоснабжения, включающую в себя также насосную станцию и водопроводную сеть.

      Источник имеет дебит Д = 280 м3/ч
      Напорно-регулирующее сооружение - башенная водокачка или резервуар с Нб = 4,0 м
      Геометрическая разность нивелирных отметок Нг = 0,3.
      Время работы насосной станции Т = 13 часов (работает с 6 до 19 часов).
      Линии водопровода,
      L1 = Hвс = 5,5 м; L2 = 68 м; L3 = 73 м; Ll4 = Нн.
      L5 = 150 м; L6 = 135 м; L7 = 100 м; L8 = 110 м; L9 = 125 м.
      Величина свободного напора в конечной точке водоразбора Нсвн = 4,8 м.
      Насос центробежный (привод ременный).
Таблица 3 - Расход воды по часам суток в процентах от суточного
14-15 15-16 3,0 6,0 6,0 11,5 5,0 5,5 5,5 5,5 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 5,5 4,5 4,0 7,0 2,0 1,0 1,5 1,5
Расчетный расход воды на участках водопроводной сети определяют, начиная о самого отдаленного потребителя до напорно-регулирующего устройства по формуле:
Qр = Qт.р +0,5Qп, (8)
где Qт.р. – транзитный расход воды на участие, м.куб./с
Qп – путевой расход воды на участие, м.куб./с
Qр = 5 + (0,5*0) = 5 м.куб./с
а) Диаметр труб на выходе из башни определяется по формуле:
Д = 2 /?*V (9)
где V – скорость движения воды в трубопроводе,
Д = 2 / 3,14 * 0,5 = 5,6 см
Диаметр подводящих труб принимается 56мм.
б) Высота водонапорного бака, м
H=H C + ?h + (Z Н - Z Б) (10)
где Нс – свободный напор с самого отдаленного и имеющего самую высокую отметку потребителя (для одноэтажных построек Нс=8м);
?h – наибольшая сумма линейных и местных потерь напора.
Н = 8+ 0,025 + 0,3 = 8,325м
Линейные потери напора или давления определяют:
hл = k * (L*V2) / 2dn (11)
где k – коэффициент
L – длина трубы, см
hл = 0,2* (1000 * 0,25) / 2 * 3,5 = 7,14м
Более точно местные потери напора определяют по формуле:
hм =? * V2/2 (12)
где? – коэффициент местного сопротивления;
hм = 0,2*0,25/2 = 0,025м
Потери напора в нагнетательном водопроводе:
L1 + L2 = 10 + 15 = 25м
Линейные потери напора:
hл = 0,02*(25*4) / (2*5,6) = 0,18м
Местные потери напора:
hм = 4 / 2 = 2м
Определяем сумму линейных и местных потерь:
?h = hл + hм (13)
?h = 0,18 + 2 = 2,18м
Определяем величину регулирующей вместимости водонапорной башни (бака):
Vp=Qcyт.max * (dп+dн) / 100 (14)
Vр=121,29 * 20 / 100 = 24,26 м.куб.
Неприкосновенность пожарной вместимости бака:
Vn=0,6(Qc.max+Qп.з.) (15)
Vn=0,6 * (3,51+ 10) = 8,11 м.куб.
Вместимость водонапорных башен (баков) наружных водопроводов:
Vб=Vр+Vn (16)
Уб = 24,26 + 8,11= 32,37 м.куб.

Далее по формуле определяем напор, который должен создать насос
Н насоса = 7,14 + 8,325 + 2,18 + 0,025 = 17,67 м.
Имея расчетные данные: Н насоса = 17,67 м; Qч насоса = 8,31 м3/ч; Qс насоса= 2,3 л/с производим энергетический расчет.
Расчетная мощность приводного двигателя к насосу определяется по формуле
Ррасч. = (17)
где Ррасч. - расчетная мощность приводного двигателя, кВт;
? - плотность воды, кг/м3;
g - ускорение свободного падения, м/с2;
Q с насоса - подача насоса, м3/с;
Н насоса - полный напор насоса, м;
- коэффициент полезного действия насоса;
- коэффициент полезного действия передачи.
? = 1000 кг/м3; = 0,4…0,64; = 1.
и т.д.................

«Красноярский государственный аграрный университет»

Хакасский филиал

Кафедра Технологии производства и переработки

сельскохозяйственной продукции

Курс лекций

по дисциплине ОПД. Ф.07.01

«Механизация в животноводстве»

для специальности

110401.65 - «Зоотехния»

Абакан 2007

Лекция II . МЕХАНИЗАЦИЯ В ЖИВОТНОВОДСТВЕ

Механизация производственных процессов в животноводстве зависит от многих факторов и прежде всего от способов содержания животных.

На фермах крупного рогатого скота применяют в основном стойлово-пастбищную и стойловую систему содержания животных. При этом способе содержания животных может быть привязным, беспривязным и комбинированным. Известна также конвейерная система содержания коров.

При привязном содержании животные находятся на привязи в стойлах, расположенных вдоль кормушек в два или четыре ряда между кормушками устраивают кормовой проход, а между стойлами - навозные проходы. Каждое стойло оборудовано привязью, кормушкой, автопоилкой и приспособлениями для доения и удаления навоза. Норма площади пола для одной коровы 8...10 м2. В летний период коров переводят на пастбище, где для них устраивают летний лагерь с навесами, загонами, водопоем и уста­новками для доения коров.

При беспривязном содержании в зимний период коровы и молодняк находятся в помещениях фермы группами по 50...100 голов, а в летний период - на пастбище, где оборудуются лагери с носами, загонами, водопоем. Там же проводят и доение коров. Разновидностью беспривязного содержания является боксовое, где коровы отдыхают в стойлах, имеющих боковые ограждения пол. Боксы позволяют экономить подстилочный материал. Конвейерно-поточное содержание в основном применяют при обслуживании дойных коров с их фиксацией к конвейеру. Известно три типа конвейеров: кольцевой; многотележный; самопередвижной. Преимущества этого содержания: животные в соответствии с распорядком дня в определенной последовательности принудительно поступают к месту обслуживания, что способствует выработке условного рефлекса. При этом сокращаются затраты труда на подгон и отгон животных, появляется возможность применять средства автоматики для учета продуктивности, программированного дозирования кормов, взвешивания животных и управление всеми технологическими процессами, конвейерное обслуживание позволяет значительно сократить затраты труда.


В свиноводстве существует три основные системы содержания свиней: свободно-выгульное - для откормочных свиней, ремонтно-молодняка, поросят-отъемышей и маток первых трех месяцев поросности; станково-выгульное (групповое и индивидуальное) - и хряков производителей, маток третьего-четвертого месяцев поросности, подсосных маток с поросятами; безвыгульное - для кормочного поголовья.

Свободно-выгульная система содержания свиней отличается от станково-выгульной тем, что животные в течение дня могут через лазы в стене свинарника свободно выходить на выгульные дворы для прогулки и кормления. При станково-выгульном содержании свиней периодически группами выпускают на прогулку или в специальное помещение для кормления (столовую). При безвыгульном содержании животные не выходят из помещения свинарника.

В овцеводстве различают пастбищную, стойлово-пастбищную и стойловую системы содержания овец.

Пастбищное содержание применяют в районах, характеризую­тся большими размерами пастбищ, на которых можно содержать животных круглый год. На зимних пастбищах для укрытия их от непогоды всегда сооружают полуоткрытые постройки с тремя стенами или загоны, а для проведения зимних или ранне-весенних родов (окотов) строят капитальные овчарни (кошары) с таким расчетом, чтобы в них поместилось 30...35 % овцематок. Для кормления овец в непогоду и во время окотов на зимних пастбищах заготовляют корма в необходимом количестве.

Стойлово-пастбшцное содержание овец применяют в районах где имеются естественные пастбища, а климат характеризуется суровой зимой. Зимой овец содержат в стационарных зданиях, давая корма всех видов, а летом - на пастбищах.

Стойловое содержание овец применяется в районах с высокой распаханностью земель и при ограниченных размерах пастбищ. Овец круглый год содержат в стационарных (закрытых или полуоткрытых) утепленных или неутепленных помещениях, давая им корма, которые получают от полевых севооборотов.

Для выращивания зверей и кроликов применяют клеточную систему содержания. Основное стадо норок, соболей, лисиц и песцов содержат в индивидуальных клетках, устанавливаемых в сараях (шедах), нутрий - в индивидуальных клетках с бассейнами или без них, кроликов- в индивидуальных клетках, а молодняк группами.

В птицеводстве применяют интенсивную, выгульную и комбинированную системы содержания. Способы содержания птицы: напольный и клеточный. При напольном содержании птицу выращивают в птичниках шириной 12 или 18 м на глубокой подстилке, планчатых или сетчатых полах. На крупных фабриках птицу содержат в клеточных батареях.

Система и способ содержания животных и птицы существенно влияют на выбор механизации производственных процессов.

ПОСТРОЙКИ ДЛЯ СОДЕРЖАНИЯ ЖИВОТНЫХ И ПТИЦЫ

Конструкция любого здания или сооружения зависит от его назначения.

На фермах крупного рогатого скота размещают коровники, телятники, здания для молодняка и откорма, родильные и ветеринарные помещения. Для содержания скота в летнее время используют летние лагерные постройки в виде легких помещений и навесов. Вспомогательные постройки, специфичные для этих ферм, - доильные или молочно-доильные блоки, молочные (сбора, обработки и хранения молока), заводы для переработки молока.


Здания и сооружения свиноводческих ферм - это свинарники-маточники, свинарники-откормочники, помещения для поросят отъемышей и хряков. Специфичным зданием свиноводческой фермы может быть помещение столовой при соответствующе технологии содержания животных.

Постройки для овец включают в себя овчарни с тепляками и базы-навесы. В овчарнях содержат животных одного пола и возраста, поэтому можно выделить овчарни для маток, валу­хов, баранов-производителей, молодняка и нагульных овец. К специфичным сооружениям овцеферм относятся стригальные пункты, ванны для купания и дезинфекции, отделения забоя овец и др.

Постройки для птицы (птичники) подразделяют на курятни­ки, индюшатники, гусятники и утятники. По назначению раз­личают птичники для взрослой птицы, молодняка и цыплят, выращиваемых на мясо (бройлеров). К специфичным зданиям птицеферм относятся инкубатории, брудергаузы, акклиматиза­торы.

На территории всех животноводческих ферм должны быть по­строены вспомогательные здания и сооружения в виде храни­лищ, складов для кормов и продукции, навозохранилищ, кормо­цехов, котельных и т. п.

САНИТАРНО-ТЕХНИЧЕСКОЕ ОБОРУДОВАНИЕ ФЕРМ

Для создания нормальных зоогигиенических условий в живот­новодческих помещениях применяют различное санитарно-техническое оборудование: внутреннюю водопроводную сеть, венти­ляционные устройства, канализацию, освещение, отопительные устройства.

Канализация предназначена для самотечного удаления жидких экскрементов и грязной воды из животноводческих и производ­ственных помещений. Канализация состоит из жижесточных ка­навок, труб, жижесборника. Конструкция и размещение элемен­тов канализации зависят от типа здания, способа содержания жи­вотных и принятой технологии. Жижесборники необходимы для временного хранения жидкости. Объем их определяют в зависи­мости от числа животных, суточной нормы жидких выделений и принятого срока хранения.

Вентиляция предназначена для удаления загрязненного воздуха из помещений и замены его чистым. Загрязнение воздуха проис­ходит в основном водяными парами, углекислым газом (С02) и аммиаком (NH3).

Отопление животноводческих помещений осуществляют теплогенераторами, в одном агрегате которых объединены вентилятор и источник теплоты.

Освещение бывает естественное и искусственное. Искусствен­ное освещение достигается применением электрических светиль­ников.

МЕХАНИЗАЦИЯ ВОДОСНАБЖЕНИЯ ЖИВОТНОВОДЧЕСКИХ ФЕРМ И ПАСТБИЩ

ТРЕБОВАНИЯ К ВОДОСНАБЖЕНИЮ ЖИВОТНОВОДЧЕСКИХ ФЕРМ И ПАСТБИЩ

Своевременное поение животных, так же как и рациональное и полноценное кормление является важным условием для сохране­ния их здоровья и повышения продуктивности. Несвоевременное и недостаточное поение животных, перебои в поении и использо­вание недоброкачественной воды приводят к значительному сни­жению продуктивности, способствуют появлению заболеваний и увеличению расхода кормов.

Установлено, что недостаточное поение животных при содер­жании их на сухих кормах вызывает торможение пищеваритель­ной деятельности, в результате чего снижается поедаемость кор­мов.

Молодняк сельскохозяйственных животных вследствие более интенсивного обмена веществ потребляет воды на I кг живой мас­сы в среднем в 2 раза больше, чем взрослые животные. Недостаток воды отрицательно отражается на росте и развитии молодняка даже при достаточном уровне кормления.

Питьевая вода плохого качества (мутная, необычного запаха и вкуса) не обладает способностью возбуждать деятельность секре­торных желез желудочно-кишечного тракта и при сильной жажде вызывает негативную физиологическую реакцию.

Важное значение имеет температура воды. Холодная вода ока­зывает неблагоприятное влияние на здоровье и продуктивность животных.

Установлено, что без корма животные могут прожить около 30 дней, а без воды - 6...8 дней (не более).

СИСТЕМЫ ВОДОСНАБЖЕНИЯ ЖИВОТНОВОДЧЕСКИХ ФЕРМ И ПАСТБИЩ

2) подземные источники - грунтовые и межпластовые воды. На рисунке 2.1 показана схема водоснабжения из поверхностного источника. Вода из поверхностного водоисточника через водоприемник 1 и трубу 2 поступает самотеком в приемный колодец 3 , откуда подается насосами насосной станции первого подъема 4 на очистные сооружения 5. После очистки и обеззараживания вода собирается в резервуаре чистой воды 6. Затем насосами насосной станции второго подъема 7 вода подается по трубопроводу в водонапорную башню 9. Далее по водопроводной сети 10 вода поступает потребителям. В зависимости от вида источника применяют различные типы водозаборных сооружений. Шахтные колодцы обычно устраивают для забора воды из маломощных водоносных пластов, залегающих на глубине не более 40 м.

Рис. 2.1. Схема системы водоснабжения из поверхностного источника:

1 - водоприемник; 2 - самотечная труба; 3- приемный колодец; 4, 7- насосные станции; 5 - очистное сооружение; 6 - резервуар; 8 - водопровод; 9 - водонапорная башня; 10- во­допроводная сеть

Шахтный колодец представляет собой вертикальную выра­ботку в грунте, врезающуюся в водоносный пласт. Колодец со­стоит из трех основных частей: шахты, водоприемной части и оголовка.

ОПРЕДЕЛЕНИЕ ПОТРЕБНОСТИ ФЕРМЫ В ВОДЕ

Количество воды, которое должно подаваться на ферму через водопроводную сеть, определяют по расчетным нормам для каж­дого потребителя с учетом их числа по формуле

где - суточная норма расхода воды одним потребителем, м3; - число потреби­телей, имеющих одинаковую норму расхода.

Принимают следующие нормы расхода воды (дм3, л) в расчете на одну голову для животных, птицы и зверей:

коровы молочные..........................

свиноматки с поросятами.................6

коровы мясные...................................70

свиноматки супоросные и

холостые.............................................60

быки и нетели.....................................25

молодняк крупного скота.................30

поросята-отъемыши.............................5

телята...................................................20

свиньи на откорме и молодняк........ 15

лошади племенные............................80

куры.......................................................1

жеребцы-производители...................70

индейки..............................................1,5

жеребята до 1,5 года...........................45

утки и гуси............................................2

овцы взрослые....................................10

норки, соболи, кролики......................3

молодняк овец......................................5

лисицы, песцы.....................................7

хряки-производи

В жарких и сухих районах нормы допускается увеличить на 25 %. В нормы потребления воды включены расходы на мойку по­мещения, клеток, молочной посуды, приготовление кормов, ох­лаждение молока. На удаление навоза предусматривают дополни­тельный расход воды в размере от 4 до 10 дм3 на одно животное. Для молодняка птицы указанные нормы уменьшают вдвое. Дл животноводческих и птицеводческих ферм специальный бытовой водопровод не проектируют.

Питьевая вода подается на ферму из общей водопроводной сети. Норма расхода воды на одного работающего 25 дм3 за смену. Для купания овец расходуется 10 дм3 в расчете на одну голову в год, на пункте искусственного осеменения овец -0,5 дм3 на одну осемененную овцу (число осемененных маток в сутки составляет 6 % общего поголовья на комплексе).

Максимальный суточный и часовой расход воды, м3, определяют по формулам:

;

,

где - коэффициент суточной неравномерности водопотребления. Обычно принимают = 1,3.

Часовые колебания расхода воды учитывают с помощью коэффициента часовой неравномерности = 2,5.

НАСОСЫ И ВОДОПОДЪЕМНИКИ

По принципу действия насосы и водоподъемники подразделяются на следующие группы.

Лопастные насосы (центробежные, осевые, вихревые). В этих на­сосах жидкость перемещается (нагнетается) под действием вращающегося рабочего колеса, снабженного лопастями. На рисунке 2.2, а, б изображены общий вид и схема работы центробежного насоса.

Рабочий орган насоса представляет собой колесо 6 с изогнутыми лопастями, при вращении которого в нагнетательном трубопроводе 2 образуется напор.

Рис. 2.2. Центробежный насос:

а – общий вид; б - схема работы насоса; 1 - манометр; 2 - нагнетательный трубопровод; 3 - насос; 4 - электродвигатель: 5 - всасывающий патрубок; 6 - рабочее колесо; 7 - вал

Работа насоса характеризуется полным напором, подачей, мощностью, частотой вращения ротора и коэффициентом полезного действия.

АВТОПОИЛКИ И ВОДОРАЗДАТЧИКИ

Животные пьют воду непосредственно из поилок, которые подразделяют на индивидуальные и групповые, стационарные и передвижные. По принципу действия поилки бывают двух видов: клапанные и вакуумные . Первые, в свою очередь, делят на педальные и поплавковые.

На фермах крупного рогатого скота для поения животных при меняют автоматические одночашечные поилки АП-1А (пластмассовые), ПА-1А и КПГ-12.31.10 (чугунные). Их устанавливают из расчета одна на две коровы при привязном содержании и одну на клетку для молодняка. Групповая автопоилка АГК-4Б с электро­подогревом воды до 4°С рассчитана на поение до 100 голов.

Групповая автопоилка АГК-12 рассчитана на 200 голов при бес­привязном содержании на открытых площадках. В зимнее время для устранения замерзания воды обеспечивается ее проточность.

Передвижная поилка ПАП-10А предназначена для использова­ния в летних лагерях и на пастбищах. Она представляет собой ци­стерну объемом 3 м3 из которой вода поступает в 12 одночашечных автопоилок, и рассчитана на обслуживание 10 голов.

Для поения взрослых свиней применяют самоочищающиеся одночашечные автопоилки ППС-1 и сосковые ПБС-1, а для поро­сят-сосунов и поросят-отъемышей - ПБ-2. Каждая из этих по­илок рассчитана соответственно на 25....30 взрослых животных и 10голов молодняка. Поилки используют при индивидуальном и групповом содержании свиней.

Для овец применяют групповую автопоилку АПО-Ф-4 с элект­роподогревом, рассчитанную на обслуживание 200 голов на от­крытых площадках. Поилки ГАО-4А, АОУ-2/4, ПБО-1, ПКО-4, ВУО-3А устанавливают внутри овчарен.

При напольном содержании птиц используют желобковые по­илки К-4А и автопоилки АП-2, АКП-1,5, при клеточном содержа­нии - ниппельные автопоилки.

ОЦЕНКА КАЧЕСТВА ВОДЫ НА ФЕРМЕ

Воду, используемую для поения животных, чаще всего оцени­вают по ее физическим свойствам: температуре, прозрачности, цвету, запаху, вкусу и привкусу.

Для взрослых животных наиболее благоприятной является вода температурой 10...12 оС летом и 15...18 оС зимой.

Прозрачность воды определяют по ее способности пропускать видимый свет. Цвет воды зависит от наличия в ней примесей ми­нерального и органического происхождения.

Запах воды зависит от живущих и отмирающих в ней организ­мов, состояния берегов и дна водоисточника, от стоков, питаю­щих водоисточник. Питьевая вода не должна иметь постороннего запаха. Вкус воды должен быть приятным, освежающим, что обус­ловливает оптимальное количество растворенных в ней минераль­ных солеи и газов. Различают горький, соленый, кислый, сладкий вкус воды и различные привкусы. Запах и вкус воды, как правило, определяют органолептически.

МЕХАНИЗАЦИЯ ПРИГОТОВЛЕНИЯ И РАЗДАЧИ КОРМОВ

ТРЕБОВАНИЯ К МЕХАНИЗАЦИИ ПРИГОТОВЛЕНИЯ И РАЗДАЧИ КОРМОВ

Заготовка, приготовление и раздача кормов - важнейшая зада­ча в животноводстве. На всех этапах решения этой задачи необхо­димо стремиться к уменьшению потерь корма и улучшению физи­ко-механического состава его. Это достигается как за счет технологических, механических и термохимических приемов подготов­ки кормов к скармливанию, так и за счет зоотехнических - выведение пород животных с высокой усвояемостью корма, ис­пользование научно обоснованных сбалансированных рационов, биологически активных веществ, стимуляторов роста.

Требования к приготовлению кормов в основном касаются сте­пени их измельчения, загрязненности, наличия вредных приме­сей. Зоотехническими условиями определены следующие размеры частиц корма: длина резки соломы и сена для коров 3...4 см, лоша­дей 1,5...2,5 см. Толщина резки корнеклубнеплодов для коров 1,5 см (молодняка 0,5... 1 см), свиней 0,5... 1 см, птицы 0,3...0,4 см. Жмых для коров дробят на частицы размером 10...15 мм. Измель­ченные концентрированные корма для коров должны состоять из частиц размером 1,8...1,4 мм, для свиней и птицы - до 1 мм (мелкий помол) и до 1,8 мм (средний помол). Размер частиц сенной (травяной) муки не должен превышать 1 мм для птиц и 2 мм для других животных. При закладке силоса с добавлением сырых кор­неклубнеплодов толщина их резки не должна превышать 5...7 мм. Силосуемые стебли кукурузы измельчают до 1,5...8 см.

Загрязненность кормовых корнеплодов не должна превышать 0,3 %, а зерновых кормов- 1 % (песком), 0,004 % (горчаком, вязелем, спорыньей) или 0,25 % (куколем, головней, плевелом).

К кормораздающим устройствам предъявляют следующие зоо­технические требования: равномерность и точность раздачи кор­ма; его дозировка индивидуально каждому животному (например, распределение концентратов по суточному надою) или группе жи­вотных (силос, сенаж и другие грубые корма или зеленая подкор­мка); предотвращение загрязнения корма и расслаивания его по фракциям; предупреждение травматизма животных; электробезо­пасность. Отклонение от предписанной нормы на одну голову жи­вотного для стебельных кормов допускается в диапазоне ± 15%, а для концентрированных кормов -±5%. Возвратимые потери корма не должны превышать ± 1 %, а невозвратимые - не допус­каются. Продолжительность операции раздачи кормов в одном помещении должна быть не более 30 мин (при использовании мо­бильных средств) и 20 мин (при раздаче кормов стационарными средствами).

Кормораздатчики должны быть универсальными (обеспечивать возможность выдачи кормов всех видов); иметь высокую произво­дительность и предусматривать регулирование нормы выдачи на голову от минимальной до максимальной; не создавать излишнего шума в помещении, легко очищаться от остатков корма и других загрязнений, быть надежными в работе.

СПОСОБЫ ПОДГОТОВКИ КОРМОВ К СКАРМЛИВАНИЮ

Корма подготавливают в целях повышения их поедаемости, пе­реваримости и использования питательных веществ.

Основные способы подготовки кормов к скармливанию: меха­нические, физические, химические и биологические.

Механические способы (измельчение, дробление, плющение, смешивание) применяют главным образом для повышения поеда­емости кормов, улучшения их технологических свойств.

Физические способы (гидробаротермические) повышают поедаемость и частично питательность кормов.

Химические способы (щелочная или кислотная обработка кор­мов) позволяет повысить доступность для организма трудноперевариваемых питательных веществ, расщепляя их до более простых соединений.

Биологические способы - дрожжевание, силосование, закваши­вание, ферментативная обработка и др.

Все указанные способы подготовки кормов применяют для улучшения их вкусовых качеств, повышения в них полноценного белка (за счет микробиального синтеза), ферментативного рас­щепления труднопереваримых углеводов до более простых, дос­тупных для организма соединений.

Подготовка грубых кормов. К числу основных грубых кормов для сельскохозяйственных животных относятся сено и солома. В рационе животных в зимний период корма этих видов составляют 25...30 % по питательности. Подготовка сена состоит в основном в измельчении для повышения поедаемости и улучшения технологических свойств. Широко применяют также физико-механичес­кие приемы, повышающие поедаемость и частично переваривае­мость соломы, - размол, запаривание, заваривание, сдабривание, гранулирование.

Измельчение - наиболее простой способ подготовки соломы к скармливанию. Он способствует повышению поедаемости ее и облегчает работу органов пищеварения животных. Наиболее приемлемая длина резки соломы средней степени измельчения для использования в составе рассыпных кормосмесей 2...5 см, для приготовления брикетов 0,8...3 см, гранул 0,5 см. Для измельчения скирдованную солому загружают фуражиром (ФН-12, ФН-1,4, ПСК-5, ПЗ-0,3) в транспортные средства. Кроме того, для измельчения соломы влажностью 17 % применяют дробилки ИГК-30Б, КДУ-2М, ИСК-3, ИРТ-165, а соломы повышенной влажности - измельчители безрешетного действия ДКВ-3А, ИРМА-15, ДИС-1 М.

Сдабривание, обогащение и запаривание соломы проводят в кормоцехах. Для химической обработки соломы рекомендованы различные виды щелочей (едкий натр, аммиачная вода, жидкий аммиак, кальцинированная сода, известь), которые применяют как в чистом виде, так и в сочетании с другими реагентами и физическими приемами (с паром, под давлением). Питательность соломы после такой обработки повышается в 1,5...2 раза.

Подготовка концентрированных кормов. Для повышения пита­тельной ценности и более рационального использования фураж­ного зерна применяют различные способы его обработки - из­мельчение, поджаривание, варку и запаривание, осолаживание, экструзию, микронизацию, плющение, флакирование, восстанов­ление, дрожжевание.

Измельчение - простой, общедоступный и обязательный спо­соб подготовки зерна к скармливанию. Измельчают сухое зерно хорошего качества с нормальным цветом и запахом на молотковых дробилках и зерновых мельницах. От степени измельчения зависит поедаемость корма, скорость прохождения его через желу­дочно-кишечный тракт, объем пищеварительных соков и их фер­ментная активность.

Степень измельчения определяют взвешиванием остатков на сите после просеивания образца. Мелкий помол представляет собой остаток на сите с отверстиями диаметром 2 мм количеством не более 5 % при отсутствии остатка на сите с отверстиями диамет­ром 3 мм; средний помол - остаток на сите с отверстиями 3 мм количеством не более 12 % при отсутствии остатков на сите с отверстиями 5 мм; крупный помол - остаток на сите с отверстиями диаметром 3 мм количеством не более 35 % при остатке на сите с отверстиями 5 мм количеством не более 5 %, при этом наличие целых зерен не допускается.

Из зерновых наибольшую сложность при обработке представ­ляют пшеница и овес.

Поджаривание зерна проводят в основном для поросят-сосунов с целью приучения их к поеданию корма в раннем возрасте, сти­муляции секреторной деятельности пищеварения, лучшего разви­тия жевательных мышц. Обычно поджаривают зерно, широко ис­пользуемое в кормлении свиней: ячмень, пшеницу, кукурузу, го­рох.

Варка и запаривание применяются при кормлении свиней зер­нобобовыми: горохом, соей, люпином, чечевицей. Эти корма предварительно измельчают, а затем в течение 1 ч варят или про­паривают 30...40 мин в кормозапарнике.

Осолаживание необходимо для улучшения вкусовых качеств зерновых кормов (ячменя, кукурузы, пшеницы и др.) и повыше­ния их поедаемости. Осолаживание проводят следующим обра­зом: зерновую дерть засыпают в специальные емкости, заливают горячей (90 °С) водой и выдерживают в ней.

Экструзия - это один из наиболее эффективных способов об­работки зерна. Подлежащее экструзии сырье доводят до влажнос­ти 12%, измельчают и подают в экструдер, где под действием высокого давления (280...390 кПа) и трения зерновая масса разог­ревается до температуры 120...150 °С. Затем вследствие быстрого перемещения ее из зоны высокого давления в зону атмосферного происходит так называемый взрыв, в результате чего гомогенная масса вспучивается и образует продукт микропористой структуры.

Микронизация заключается в обработке зерна инфракрасными лучами. В процессе микронизации зерна происходит желатинизация крахмала, при этом количество его в такой форме увеличива­ется.

КЛАССИФИКАЦИЯ МАШИН И ОБОРУДОВАНИЯ ДЛЯ ПОДГОТОВКИ И РАЗДАЧИ КОРМОВ

Для подготовки кормов к скармливанию применяют следую­щие машины и оборудование: измельчители, очистители, мойки, смесители , дозаторы, накопители, запарники, тракторное и на­сосное оборудование и др.

Технологическое оборудование для приготовления кормов классифицируют по технологическим признакам и способу обра­ботки. Так, измельчение кормов осуществляется дроблением, ре­занием, ударом, растиранием за счет механического взаимодей­ствия рабочих органов машины и материала. Каждому виду из­мельчения соответствует свой тип машины: удару - молотковые дробилки; резанию - соломо-силосорезки; растиранию - жерно­вые мельницы. В свою очередь дробилки классифицируют по принципу работы, конструктивным и аэродинамическим особен­ностям, месту загрузки, способу отвода готового материала. Такой подход применяется практически для всех машин, участвующих в подготовке корма.

Выбор технических средств для погрузки и раздачи кормов и рациональное их использование определяются в основном такими факторами, как физико-механические свойства кормов, способ кормления, тип животноводческих построек, способ содержания животных и птицы, размер ферм. Разнообразие кормораздающих устройств обусловлено различным сочетанием рабочих органов, сборочных единиц и разными способами их агрегатирования с энергетическими средствами.

Все кормораздатчики можно разделить на два типа: стационар­ные и мобильные (передвижные).

Стационарные кормораздатчики представляют собой различного рода транспортеры (цепные, цепочно-скребковые, штангово-скребковые, шнековые, ленточные, платформенные, спирально-винтовые, тросово-шайбовые, цепочно-шайбовые, колебатель­ные, ковшовые).

Передвижные кормораздатчики бывают автомобильные, трак­торные, самоходные. Преимущества передвижных кормораздат­чиков перед стационарными - более высокая производительность труда.

Общий недостаток кормораздатчиков - низкая универсаль­ность при раздаче различных кормов.

ОБОРУДОВАНИЕ КОРМОЦЕХОВ

Технологическое оборудование кормоприготовления размеща­ют в специальных помещениях - кормоцехах, в которых ежеднев­но перерабатываются десятки тонн различных кормов. Комплекс­ная механизация приготовления кормов позволяет улучшать их качество, получать полнорационные смеси в виде монокормов при одновременном снижении стоимости их обработки.

Различают специализированные и комбинированные кормоце­хи. Специализированные кормоцехи предназначены для одного вида ферм (крупного рогатого скота, свиноводческих, птицевод­ческих), а комбинированные-для нескольких отраслей живот­новодства.

В кормоцехах животноводческих ферм различают три основ­ные технологические линии, по которым группируют и классифи­цируют кормоприготовительные машины (рис. 2.3). Это технологические линии концентрированных, сочных и грубых (зеленых кормов). Все три сходятся вместе на заключительных операциях процесса приготовления кормов: дозировании, запаривании и смешивании.

Бункер" href="/text/category/bunker/" rel="bookmark">бункера ; 8 - мойка-измельчитель; 9 - выгрузной шнек; 10- загрузочный шнек; 11 - запарники-смесители

Широко внедряют технологию кормления животных полнора­ционными кормовыми брикетами и гранулами в виде монокорма. Для ферм и комплексов крупного рогатого скота, а также для ов­цеводческих ферм применяют типовые проекты кормоцехов КОРК-15, КЦК-5, КЦО-5 и КПО-5 и др.

Комплект оборудования кормоцеха КОРК-15 предназначен для быстрого приготовления влажных кормосмесей, в состав которых входят солома (россыпью, в рулонах, тюках), сенаж или силос, корнеклубнеплоды, концентраты, меласса и раствор карбамида. Этот комплект можно использовать на молочно-товарных фермах и комплексах размером 800...2000 голов и откормочных фермах размером до 5000 голов крупного рогатого скота во всех сельско­хозяйственных зонах страны.

На рисунке 2.4 представлена схема размещения оборудования кормоцеха КОРК-15.

Технологический процесс в кормоцехе протекает так: из транс­портного самосвального средства солома выгружается в приемный бункер 17, откуда поступает на конвейер 16, который предварительно

DIV_ADBLOCK329">

При правильном кормлении коровы в вымени непрерывно течение суток образуется молоко. По мере заполнения емкость вымени увеличивается внутривыменное давление и молокообразование замедляется. Большая часть молока находится в альвеолах и мелких молочных протоках вымени (рис. 2.5). Это молоко нельзя удалить без использования приемов, вызывающих полноценный рефлекс молокоотдачи.

Выделение молока из вымени коровы зависит от человека, животного и совершенства доильной техники. Эти три составляющих и определяют в целом процесс доения коровы.

К доильной технике предъявляют следующие требования:

https://pandia.ru/text/77/494/images/image013_47.jpg" width="419" height="235 src=">

Рис. 2.6. Схемы работы и устройство двухкамерных доильных стаканов:

а - двухтактное доение; б - трехтактное доение; 1 - резиновая манжета; 2 - корпус стакана; 3 - сосковая резина; 4- соединительное кольцо; 5-прозрачный смотровой патрубок (конус); 6 - молочный резиновый патрубок; 7-уплотнительное кольцо; М - межстенные про­странства доильных стаканов; П - подсосковые камеры доильных стаканов

Эта разность давлений (вакуум) выдавливает молоко из цистерны соска через сфинктер за ее пределы, поэтому доильные ста­ны иногда называют вакуумными.

В любой промежуток времени в камерах доильного стакана устанавливается определенное состояние: атмосферное давление и разрежение, в определенной последовательности происходит их смена (чередование).

Работа однокамерного доильного стакана (рис. 2.7) происходит следующим образом. Из стакана откачивается воздух, и под соском образуется вакуум (разрежение). При этом сосок вытягивается и упирается в конец стакана. Возникает разность давлений под соском и внутри вымени, сфинктер соска открывается и молоко начинает вытекать. Происходит такт сосания (рис. 2.7, а). Длительность такта сосания определяется временем действия разрежения под соском и наличием молока в молочной цистерне соска. Далее в подсосковую камеру впускается воздух и разность давлений уменьшается до минимума (до естественных значений), вытекание молока через сфинктер соска прекращается и начинается такт отдыха (рис. 2.7, б). При этом сосок укорачивается и в нем восстанавливается кровообращение. За тактом отдыха вновь начинается такт сосания. Полный цикл работы однокамерного стакана состоит из двух тактов: сосания и отдыха.

Рис. 2.7. Схема однокамерного доильного стакана с гофрированным присоском: а - такт сосания; б - такт отдыха

Работа двухтактного стакана может происходить по двух-трехтактным циклам (сосание сжатие) и (сосание - сжатие - отдых). При такте сосания в подсосковой и межстенной камерах должно быть разрежение. Происходит истечение молока из соска вымени через сфинктер в подсосковую камеру. При такте сжатия в подсосковой камере разрежение, в межстенной - атмосферное давление. За счет разности давлений в подсосковой и межстенной камерах сосковая резина сжимается и сжимает сосок и сфинктер, препятствуя тем самым вытеканию молока. При такте отдыха в подсосковой и межстенной камерах атмосферное давление, т. е. в данный период времени сосок максимально приближен к своему естественному состоянию - в нем восстанавливается кровообращение.

Двухтактный режим работы доильного стакана наиболее напряженный, так как сосок постоянно испытывает воздействие вакуума. Однако при этом обеспечивается высокая скорость доения.

Трехтактный режим работы максимально приближен к ее естественному способу выделения молока.

МАШИНЫ И АППАРАТЫ ДЛЯ ПЕРВИЧНОЙ ОБРАБОТКИ И ПЕРЕРАБОТКИ МОЛОКА

ТРЕБОВАНИЯ К ПЕРВИЧНОЙ ОБРАБОТКЕ И ПЕРЕРАБОТКЕ МОЛОКА

Молоко представляет собой биологическую жидкость, продуцируемую секрецией молочных желез млекопитающих. В нем находятся молочный сахар (4,7 %) и минеральные соли (0,7 %), коллоидной фазе содержится часть солей и белков (3,3 %) и в мел­кодисперсной фазе - молочный жир (3,8%) в форме, близкой к шаровой, окруженный белково-липидной оболочкой. Молоко об­ладает иммунными и бактерицидными свойствами, так как содер­жит витамины , гормоны, ферменты и другие активные вещества.

Качество молока характеризуется жирностью, кислотностью, бактериальной обсемененностью, механической загрязненностью, цветом, запахом и вкусом.

Молочная кислота накапливается в молоке вследствие броже­ния молочного сахара под действием бактерий. Кислотность вы­ражается в условных единицах - градусах Тернера (°Т) и опреде­ляется числом миллиметров децинормального раствора щелочи, израсходованной на нейтрализацию 100 мл молока. Свежее моло­ко имеет кислотность 16°Т.

Температура замерзания молока ниже, чем воды, и находится в пределах -0,53...-0,57 °С.

Температура кипения молока около 100,1 °С. При 70 °С в моло­ке начинаются изменения белка и лактозы. Молочный жир засты­вает при температурах от 23...21,5 °С, начинает плавиться при 18,5°С и прекращает плавиться при 41...43 °С. В теплом молоке жир находится в состоянии эмульсии, а при низких температу­рах (16...18°С) превращается в суспензию в молочной плазме. Средний размер жировых частиц 2...3 мкм.

Источниками бактериального обсеменения молока при ма­шинном доении коров могут быть загрязненный кожный покров вымени, плохо промытые доильные стаканы, молочные шланги, молочные краны и детали молокопровода. Поэтому при первич­ной обработке и переработке молока следует строго соблюдать санитарно-ветеринарные правила. Очистку, мойку и дезинфекцию оборудования и молочной посуды надо проводить сразу же после окончания работ. Моечные и отделения для хранения чистой по­суды желательно располагать в южной части помещения, а храни­лище и холодильные отделения - в северной. Все работники мо­лочной должны строго соблюдать правила личной гигиены и сис­тематически проходить медицинское освидетельствование.

При неблагоприятных условиях в молоке быстро развиваются микроорганизмы, поэтому его необходимо своевременно обраба­тывать и перерабатывать. Вся технологическая обработка молока, условия его хранения и транспортировки должны обеспечивать получение молока первого сорта в соответствии со стандартом.

СПОСОБЫ ПЕРВИЧНОЙ ОБРАБОТКИ И ПЕРЕРАБОТКИ МОЛОКА

Молоко охлаждают, нагревают, пастеризуют и стерилизуют; перерабатывают на сливки, сметану, сыр, творог, кисломолоч­ные продукты; сгущают, нормализуют, гомогенизируют, сушат и т. д.

В хозяйствах, которые поставляют цельное молоко на молокообрабатывающие предприятия, применяют наиболее простую схе­му доение - очистка - охлаждение, осуществляемую в доильных установках. При поставках молока в торговую сеть возможна схе­ма доение - очистка - пастеризация - охлаждение - расфасовка в мелкую тару. Для глубинных хозяйств, поставляющих свою продукцию на продажу, возможны линии по переработке молока на молочнокислые продукты, кефир, сыры или, например, по производству сливочного масла по схеме доение - очистка - пастеризация - сепарирование - маслоизготовление. Приготовление сгу­щенного молока - одна из перспективных технологий для многих хозяйств.

КЛАССИФИКАЦИЯ МАШИН И ОБОРУДОВАНИЯ ДЛЯ ПЕРВИЧНОЙ ОБРАБОТКИ И ПЕРЕРАБОТКИ МОЛОКА

Сохранение молока в свежем виде на длительный срок - важ­ная задача, так как из молока с повышенной кислотностью и большим содержанием микроорганизмов нельзя получить качественные продукты.

Для очистки молока от механических примесей и видоизменен­ных составных частей применяют фильтры и центробежные очис­тители. В качестве рабочих элементов в фильтрах используют лат­ные диски, марлю, фланель, бумагу, металлическую сетку, синте­тические материалы.

Для охлаждения молока применяют фляжные, оросительные, резервуарные, трубчатые, спиральные и пластинчатые охладители. По конструктивному исполнению они бывают горизонтальные, вертикальные, герметичные и открытые, а по виду системы охлаждения - оросительные, змеевиковые, с промежуточным хладоносителем и непосредственного охлаждения, с испарителем холодильной машины, встроенным и погружаемым в ванну для молока.

Холодильная машина может быть встроенной в резервуар или автономной.

Для нагрева молока применяют пастеризаторы резервуарные, вытеснительным барабаном, трубчатые и пластинчатые. Широко распространены электропастеризаторы.

Для разделения молока на составные продукты применяют сепараторы. Различают сепараторы-сливкоотделители (для получения сливок и очистки молока), сепараторы-молокоочистители (для очистки молока), сепараторы-нормализаторы (для очистки и нормализации молока, т. е. получения очищенного молока определенной жирности), универсальные сепараторы (для отделения сливок, очистки и нормализации молока) и сепараторы специального назначения.

По конструктивному исполнению сепараторы бывают открытые, полузакрытые, герметические.

ОБОРУДОВАНИЕ ДЛЯ ОЧИСТКИ, ОХЛАЖДЕНИЯ, ПАСТЕРИЗАЦИИ, СЕПАРИРОВАНИЯ И НОРМАЛИЗАЦИИ МОЛОКА

Молоко очищают от механических примесей с помощью фильтров или центробежных очистителей. Молочный жир в состоянии суспензии имеет тенденцию к агрегатированию, поэтому фильтрование и центробежную очистку предпочтительно проводить для теплого молока.

Фильтры задерживают механические примеси. Хорошими показателями качества фильтрации обладают ткани из лавсана: других полимерных материалов с числом ячеек не менее 225 на 1 см2. Молоко проходит через ткань под давлением до 100 кПа. При использовании фильтров тонкой очистки требуются большие напоры, фильтры забиваются. Время их использования ограниче­но свойствами фильтрующего материала и загрязненностью жид­кости.

Сепаратор-молокоочиститель ОМ-1А служит для очистки моло­ка от посторонних примесей, частиц свернувшегося белка и других включений, плотность которых выше плотности молока. Про­изводительность сепаратора 1000 л/ч.

Сепаратор-молокоочиститель ОМА-ЗМ (Г9-ОМА) производи­тельностью 5000 л/ч входит в комплект автоматизированных плас­тинчатых пастеризационно-охладительных установок ОПУ-ЗМ и 0112-45.

Центробежные очистители дают бол ее высокую степень очистки молока. Принцип работы их следующий. Молоко подается в бара­бан очистителя через поплавковую регулирующую камеру по цент­ральной трубке. В барабане оно движется по кольцевому простран­ству, распределяясь тонкими слоями между разделительными та­релками, и перемещается к оси барабана. Механические примеси, имеющие большую плотность, чем молоко, выделяются в тонко­слойном процессе прохождения между тарелками и откладываются на внутренних стенках барабана (в грязевом пространстве).

Охлаждение молока препятствует его порче и обеспечивает транспортабельность. Зимой молоко охлаждают до 8 °С, летом - до 2...4 °С. С целью экономии энергии используют природный хо­лод, например холодный воздух зимой, но более эффективна ак­кумуляция холода. Наиболее простой способ охлаждения - по­гружение фляг и бидонов с молоком в проточную или ледяную воду, снег и т. п. Более совершенны способы с использованием молочных охладителей.

Открытые оросительные охладители (плоские и цилиндричес­кие) имеют приемник молока в верхней части поверхности тепло­обмена и сборник в нижней части. В трубах теплообменника про­ходит охлаждающая жидкость. Из отверстий в дне приемника мо­локо попадает на орошаемую поверхность теплообмена. Стекая по ней тонким слоем, молоко охлаждается и освобождается от растворенных в нем газов.

Пластинчатые аппараты для охлаждения молока входят в состав пастеризационных установок и молокоочистителей в комп­лекте доильных установок. Пластины аппаратов выполнены гофрированными из нержаве­ющей стали, применяемой в пищевой промышленности . Расход охлаждающей ледяной воды принимают трехкратным по отноше­нию к расчетной производительности аппаратов, которая состав­ляет 400кг/ч в зависимости от числа пластин теплообмена, собранных в рабочий пакет. Разность температур между охлажда­ющей водой и холодным молоком составляет 2...3°С.

Для охлаждения молока применяют резервуары-охладители с промежуточным хладоносителем РПО-1,6 и РПО-2,5, резервуар-охладитель молока МКА 200Л-2А с рекуператором теплоты, очиститель-охладитель молока ООМ-1000 «Холодок», резервуар для охлаждения молока РПО-Ф-0,8.

СИСТЕМЫ УДАЛЕНИЯ И УТИЛИЗАЦИИ НАВОЗА

Уровень механизации работ по уборке и удалению навоза до­стигает 70...75 %, а трудовые затраты составляют 20...30 % общих затрат .

Проблема рационального использования навоза как удобрения при одновременном соблюдении требований защиты окружаю­щей природы от загрязнений имеет важное народнохозяйственное значение. Эффективное решение данной проблемы предусматри­вает системный подход, включающий рассмотрение во взаимосвя­зи всех производственных операций: удаление навоза из помеще­ний, транспортирование его, переработку, хранение и использо­вание. Технологию и наиболее эффективные средства механиза­ции для удаления и утилизации навоза следует выбирать на основ технико-экономического расчета с учетом вида и системы (способа) содержания животных, размеров ферм, производственных условий и почвенно-климатических факторов.

В зависимости от влажности различают твердый, подстилочный (влажность 75...80%), полужидкий (85...90 %) и жидкий (90...94 %) навоз, а также навозные стоки (94...99 %). Выход экскрементов от различных животных за сутки колеблется приблизительно от 55 кг (у коров) до 5,1 кг (у откормочных свиней) и зависит в первую очередь от кормления. Состав и свойства навоза влияют на процесс его удаления, обработки, хранения, использования, а также на микроклимат помещений и окружающую природную среду.

К технологическим линиям уборки, транспортирования и утилизации навоза любого вида предъявляют следующие требования:

своевременное и качественное удаление навоза из животноводческих помещений при минимальном расходе чистой воды;

обработка его с целью выявления инфекций и последующего обеззараживания;

транспортировка навоза к местам переработки и хранения;

дегельминтизация;

максимальное сохранение питательных веществ в исходном навозе и продуктах его переработки;

исключение загрязнения окружающей природной среды, а так же распространения инфекций и инвазий;

обеспечение оптимального микроклимата, максимальной чистоты животноводческих помещений.

Сооружения по обработке навоза следует размещать с подветренной стороны и ниже водозаборных объектов, а прифермские навозохранилища - за пределами фермы. Необходимо предусматривать санитарные зоны между животноводческими помещениями и жилыми поселками. Участок под очистные сооружения не должен затапливаться паводковыми и ливневыми водами. Все сооружения системы удаления, обработки и утилизации навоза должны быть выполнены с надежной гидроизоляцией .

Многообразие технологий содержания животных вызывает необходимость использования различных систем уборки навоза в помещениях. Наиболее широко применяют три системы удале­ния навоза: механическую, гидравлическую и комбинированную (щелевые полы в сочетании с подпольным навозохранилищем или каналами, в которых размещены механические средства уборки).

Механическая система предопределяет удаление навоза из по­мещений всевозможными механическими средствами: навозными транспортерами, бульдозерными лопатами, скреперными уста­новками, подвесными или наземными вагонетками .

Гидравлическая система уборки навоза бывает смывная, рецир­куляционная, самотечная и отстойно-лотковая (шиберная).

Смывная система уборки предусматривает ежедневную про­мывку каналов водой из смывных насадков. При прямом смыве навоз удаляют струей воды, создаваемой напором водопроводной сети или подкачивающим насосом. Смесь воды, навоза и навоз­ной жижи стекает в коллектор и для повторного смыва уже не ис­пользуется.

Рециркуляционная система предусматривает использование для удаления навоза из каналов осветленной и обеззараженной жид­кой фракции навоза, подаваемой по напорному трубопроводу из резервуара-накопителя.

Самотечная система непрерывного действия обеспечивает удале­ние навоза за счет сползания его по естественному уклону, образу­ющемуся в каналах. Ее применяют на фермах крупного рогатого скота при содержании животных без подстилки и кормлении их силосом, корнеклубнеплодами, бардой, жомом и зеленой массой и в свинарниках при кормлении жидкими и сухими комбикорма­ми без использования силоса и зеленой массы.

Самотечная система периодического действия обеспечивает уда­ление навоза, который накапливается в продольных каналах, обустроенных шиберами за счет сброса его при открытии шиберов. Объем продольных каналов должен обеспечивать накопление навоза в течение 7...14 дней. Обычно размеры канала следующие: длина З...50м, ширина 0,8 м (и более), минимальная глубина 0,6 м. При этом чем гуще навоз, тем короче и шире должен быть канал.

Все самотечные способы удаления навоза из помещений осо­бенно эффективны при привязном и боксовом содержании животных без подстилки на теплых керамзитобетонных полах или на резиновых ковриках.

Основной способ утилизации навоза - использование его в качестве органического удобрения. Наиболее эффективным способом удаления и использования жидкого навоза является утилизация его на полях орошения. Известны также способы переработки навоза в кормовые добавки, для получения газа и битоплива.

КЛАССИФИКАЦИЯ ТЕХНИЧЕСКИХ СРЕДСТВ ДЛЯ УДАЛЕНИЯ И УТИЛИЗАЦИИ НАВОЗА

Все технические средства для удаления и утилизации навоза делят на две группы: периодического и непрерывного действия.

Транспортные устройства безрельсовые и рельсовые, назем­ные и надземные, мобильные погрузки, скреперные установки и другие средства относятся к оборудованию периодического действия.

Транспортирующие устройства непрерывного действия бывают с тяговым органом и без него (самотечный, пневматический и гидравлический транспорт).

По назначению различают технические средства для ежедневной уборки и периодической, для удаления глубокой подстилки, для очистки выгульных площадок.

В зависимости от конструктивного исполнения различают:

наземные и подвесные рельсовые вагонетки и безрельсовые ручные тележки:

скребковые транспортеры кругового и возвратно-поступатель­ного движения;

канатные скреперы и тросовые лопаты;

навесные устройства на тракторах и самоходных шасси;

устройства для гидравлического удаления навоза (гидротранс­порт);

устройства с применением пневматики.

Технологический процесс уборки навоза из животноводческих помещений и транспортировки его на поле можно разделить на следующие последовательно выполняемые операции:

сбор навоза из стойл и сбрасывание его в канавки или погрузка в вагонетки (тележки);

транспортировка навоза от стойл по животноводческому поме­щению к месту сбора или погрузки;

погрузка на транспортные средства;

транспортировка по территории фермы к навозохранилищу или месту компостирования и разгрузки:

погрузка из хранилища на транспортные средства;

транспортировка на поле и выгрузка из транспортного сред­ства.

Для выполнения этих операций применяют много различных вариантов машин и механизмов. Наиболее рациональным следует, считать тот вариант, в котором один механизм выполняет две опе­рации и более, а стоимость уборки 1 т навоза и перемещения его на удобряемые поля наименьшая.

ТЕХНИЧЕСКИЕ СРЕДСТВА ДЛЯ УДАЛЕНИЯ НАВОЗА ИЗ ЖИВОТНОВОДЧЕСКИХ ПОМЕЩЕНИЙ

Механические средства для удаления навоза подразделяют на мобильные и стационарные. Мобильные средства применяют в основном при беспривязном содержании скота с использованием подстилки. В качестве подстилки обычно используют солому, торф, мякину, опилки, стружку, опавшие листья и хвою деревьев. Примерные суточные нормы внесения подстилки на одну корову 4...5 кг, овцу - 0,5... 1 кг.

Навоз из помещений, где содержатся животные, удаляют один-два раза в год с помощью различных навешиваемых на транспорт­ное средство устройств для перемещения и погрузки различных грузов, в том числе и навоза.

В животноводстве широко применяют навозоуборочные транс­портеры ТСН-160А, ТСН-160Б, ТСН-ЗБ, ТР-5, ТСН-2Б, про­дольные скреперные установки УС-Ф-170А или УС-Ф250А в ком­плекте с поперечными УС-10, УС-12 и УСП-12, скреперные про­дольные транспортеры ТС-1ПР в комплекте с поперечным ТС-1ПП, скреперные установки УС-12 в комплекте с поперечной УСП-12, шнековые транспортеры ТШН-10.

Скребковые транспортеры ТСН-ЗБ и ТСН-160А (рис. 2.8) кругового действия предназначены для удаления навоза из животно­водческих помещений с одновременной погрузкой его в транс­портные средства.

Горизонтальный транспортер 6 , устанавливаемый в навозном канале, состоит из шарнирной разборной цепи с закрепленными на ней скребками 4, приводной станции 2, натяжного 3 и поворотных 5 устройств. Привод цепи осуществляется от электродвигателя через клиноременную передачу и редуктор .

https://pandia.ru/text/77/494/images/image016_38.jpg" width="427" height="234 src=">

Рис. 2.9. Скреперная установка УС-Ф-170:

1, 2 - приводная и натяжная станции; 3- ползун; 4, 6-скребки; 5 -цепь; 7 -направляю­щие ролики; 8 - штанга

https://pandia.ru/text/77/494/images/image018_25.jpg" width="419" height="154 src=">

Рис. 2.11. Технологическая схема установки УТН-10А:

1 - скреперная итаповкаУС-Ф-170(УС-250); 2- гидроприводная станция; 3 – навозохранилище; 4 – навозопровод; 5 -загрузочная воронка; 6 - насос; 7 - навозоуборочный конвейер КНП-10

Шнековые и центробежные насосы типа НШ, НЦИ, НВЦ ис­пользуют для выгрузки и перекачки жидкого навоза по трубопро­водам. Производительность их находится в пределах от 70 до 350 т/ч.

Скреперная установка ТС-1 предназначена для свиноводческих ферм. Ее устанавливают в навозном канале, который перекрывают решетчатыми полами. Установка состоит из поперечного и про­дольного транспортеров. Основные сборочные единицы транс­портеров: скреперы, цепи, привод. На установке ТС-1 применяют скрепер типа «Каретка». Привод, состоящий из редуктора и элект­родвигателя, сообщает скреперам возвратно-поступательное дви­жение и предохраняет их от перегрузок.

Навоз от животноводческих помещений к местам обработки и хранения транспортируют мобильными и стационарными сред­ствами.

Агрегат ЭСА-12/200А (рис. 2.12) предназначен для стрижки 10...12 тыс. овец в сезон. Его используют для оборудования стаци­онарных, передвижных или временных стригальных пунктов на 12 рабочих мест.

Процесс стрижки и первичной обработки шерсти на примере комплекта КТО-24/200А организуют следующим образом: обору­дование комплекта размещают внутри стригального пункта. Отару овец загоняют в загоны, примыкающие к помещению стригаль­ного пункта. Подавальщики ловят овец и подают их к рабочим местам стригалей. У каждого стригаля имеется набор жетонов с ука­занием номера рабочего места. После стрижки каждой овцы стригаль укладывает на транспортер руно вместе с жетоном. В конце транспортера подсобный рабочий укладывает руно на весы и по номеру жетона учетчик записывает в ведомость массу руна отдель­но каждому стригалю. Затем на столе для классировки шерсти производится его разделение по классам. С классировочного стола шерсть попадает в бокс соответствующего класса, откуда направ­ляется для прессования в кипы, после чего кипы взвешивают, маркируют и отправляют на склад готовой продукции .

Стригальный аппарат «Руно-2» предназначен для стрижки овец на отгонных пастбищах или фермерских хозяйствах, не имеющих централизованного снабжения электроэнергией. Состоит из стригальной машинки с приводом от высокочастотного асинхронного электродвигателя, преобразователя, питающегося от бортовой сети автомобиля или трактора, комплекта соединительных проводов и дипломата для переноски. Обеспечивает одновременную ра­боту двух стригальных машинок.

Потребляемая мощность одной стригальной машинки 90 Вт, напряжение 36 В, частота тока 200 Гц.

Широкое распространение на стригальных пунктах получили стригальные машинки МСО-77Б и высокочастотные МСУ-200В. МСО-77Б предназначены для стрижки овец всех пород и состоит из корпуса, режущего аппарата, эксцентрикового, нажимного и шарнирного механизмов. Корпус служит для соединения всех ме­ханизмов машинки и обшит сукном для предохранения руки стригаля от перегрева. Режущий аппарат является рабочим орга­ном машинки и служит для срезания шерсти. Работает по прин­ципу ножниц, роль которых выполняют лезвия ножа и гребенки. Нож срезает шерсть, совершая поступательное движение по гре­бенке 2300 двойных ходов в минуту. Ширина захвата машинки 77 мм, масса 1,1 кг. Привод ножа осуществляется гибким валом от внешнего электродвигателя через эксцентриковый механизм.

Высокочастотная стригальная машинка МСУ-200В (рис. 2.13) состоит из электростригальной головки, электродвигателя и шну­ра питания. Принципиальным отличием ее от машинки МСО-77Б является то, что трехфазный асинхронный электродвигатель с короткозамкнутым ротором выполнен как единое целое со стригаль­ной головкой. Мощность электродвигаВт, напряжение 36 В, частота тока 200 Гц, частота вращения ротора электродвига­мин-1. Преобразователь частоты тока ИЭ-9401 преоб­разует промышленный ток напряжением 220/380 В в ток повы­шенной частоты - 200 или 400 Гц напряжением 36 В, безопасный для работы обслуживающего персонала.

Для заточки режущей пары используют однодисковый точиль­ный аппаратТА-1 и доводочный аппарат ДАС-350.

Консервация" href="/text/category/konservatciya/" rel="bookmark">консервационной смазкой. Снятые ранее детали и узлы устанавливают на место, выполняя необходимые регулировки. Проверяют рабо­тоспособность и взаимодействие механизмов путем кратковре­менного пуска машины и работы ее в режиме холостого хода.

Обращают внимание на надежность заземлений корпусных металлических деталей. Помимо общих требований при подготовке к использованию конкретных машин учитывают особенности их конструкции и эк­сплуатации.

В агрегатах с гибким валом вначале присоединяют вал к электродвигателю, а затем к стригальной машинке. Обращают внимание на то, чтобы вал ротора легко проворачивался от руки и не имел осевого и радиального биения. Направление враще­ния вала должно соответствовать направлению закручивания вала, а не наоборот. Движение всех элементов стригальной ма­шинки должно быть плавным. Электродвигатель должен быть закреплен.

Работоспособность агрегата проверяют кратковременным включением его при холостой работе.

При подготовке к работе транспортера шерсти обращают вни­мание на натяжение ленты. Натянутая лента не должна проскаль­зывать на приводном барабане транспортера. При подготовке к работе точильных агрегатов, весов, столов для классировки, прес­са для шерсти обращают внимание на работоспособность отдель­ных узлов.

Качество стрижки овец оценивают по качеству получаемой шерсти. Это прежде всего исключение перестрига шерсти. Пере­стриг шерсти получается при неплотном прижатии гребенки стри­гальной машинки к телу овцы. В этом случае машинка срезает шерсть не около кожи животного, а выше и тем самым укорачива­ет длину волокна. Повторная стрижка ведет к получению сечки, которая засоряет руно.

МИКРОКЛИМАТ В ЖИВОТНОВОДЧЕСКИХ ПОМЕЩЕНИЯХ

ЗООТЕХНИЧЕСКИЕ И САНИТАРНО-ГИГИЕНИЧЕСКИЕ ТРЕБОВАНИЯ

Микроклимат животноводческих помещений - это совокуп­ность физических, химических и биологических факторов внутри помещения, оказывающих определенное воздействие на организм животных. К ним относятся: температура, влажность, скорость движения и химический состав воздуха (содержание в нем вред­ных газов, наличие пыли и микроорганизмов), ионизация, излу­чение и др. Сочетание этих факторов может быть различным и влиять на организм животных и птиц как положительно, так и от­рицательно.

Зоотехнические и санитарно-гигиенические требования по со­держанию животных и птицы сводятся к поддержанию показате­лей микроклимата в пределах установленных норм. Нормативы микроклимата для различных видов помещений приведены в таб­лице 2.1.

Микроклимат животноводческих помещений табл. 2.1

Создание оптимального микроклимата - это производствен­ной процесс, заключающийся в регулировании техническими средствами параметров микроклимата до получения такого их сочетания, при котором условия среды наиболее благоприятствуют нормальному протеканию физиологических процессов в организме животного. Необходимо также учитывать, что неблагоприятные параметры микроклимата в помещениях отрицательно влияют и на здоровье людей, обслуживающих животных, вызывая у их снижение производительности труда и быстрое утомление, например, излишняя влажность воздуха в стойловых помещениях при резком снижении внешней температуры приводит к усилении конденсации водяных паров на элементах конструкций здании, вызывает загнивание деревянных конструкций и в то же вре­мя делает их малопроницаемыми для воздуха и более теплопро­водными.

На изменение параметров микроклимата животноводческого помещения влияют: колебания температуры внешнего воздуха, за­висящей от местного климата и времени года; приток или потери теплоты через материал постройки; накопление теплоты, выделяемой животными; количество выделяемого водяного пара, аммиака и углекислоты, зависящей от частоты удаления навоза и состоя­ния канализации; состояние и степень освещения помещений; технология содержания животных и птицы. Большую роль играют конструкции дверей, ворот, наличие тамбуров.

Поддержание оптимального микроклимата снижает себестоимость продукции.

СПОСОБЫ СОЗДАНИЯ НОРМАТИВНЫХ ПАРАМЕТРОВ МИКРОКЛИМАТА

Для поддержания в помещениях с животными оптимального микроклимата их необходимо вентилировать, отапливать или ох­лаждать. Управлять вентиляцией , отоплением и охлаждением должна автоматика. Количество удаляемого из помещения воздуха всегда равно количеству поступающего. Если в помещении рабо­тает вытяжная установка, то приток свежего воздуха происходит неорганизованно.

Системы вентиляции делят на естественную, принудитель­ную с механическим побудителем воздуха и комбинированную. Естественная вентиляция происходит за счет разности плотнос­тей воздуха внутри и вне помещения, а также под влиянием вет­ра. Принудительную вентиляцию (с механическим побудите­лем) подразделяют на нагнетательную с подогревом подаваемо­го воздуха и без подогрева, вытяжную и нагнетательно-вытяжную.

Оптимальные параметры воздуха в животноводческих помеще­ниях поддерживает, как правило, вентиляционная система , кото­рая может быть вытяжной (вакуумной), приточной (нагнетатель­ной) или приточно-вытяжной (сбалансированной). Вытяжная вентиляция, в свою очередь, может быть с естественной тягой воз­духа и с механическим побудителем, а естественная вентиляция беструбной и трубной. Естественная вентиляция обычно удовлетворительно работает в весеннее и осеннее время года, а также при температуре наружного воздуха до 15 °С. Во всех остальных случаях воздух необходимо нагнетать в помещения, а в северных и центральных районах дополнительно подогревать.

Вентиляционная установка обычно состоит из вентилятора электрическим двигателем и вентиляционной сети, в которую входят система воздуховодов и приспособления для забора и выпуска воздуха. Вентилятор предназначен для перемещения воздуха. Возбудителем движения воздуха в нем служит рабочее колесо лопастями, заключенное в специальный кожух. По значению развиваемого полного давления вентиляторы делят на устройств низкого (до 980 Па), среднего (980...2940 Па) и высокого (294Па) давления; по принципу действия - на центробежные и осевые. В животноводческих помещениях применяют вентиляторы низкого и среднего давления, центробежные и осевые, общего назначения и крышные, правого и левого вращения. Вентилятор изготавливают различных размеров.

В животноводческих помещениях применяют следующие вид отопления: печное, центральное (водяное и паровое низкого давления) и воздушное. Наиболее широко используют системы воздушного отопления. Сущность воздушного отопления состоит том, что подогретый в калорифере воздух впускается в помещение непосредственно или через систему воздуховодов. Для воздушного отопления используют калориферы. Воздух в них может нагреваться водой, паром, электричеством или продуктами сгорающего топлива. Поэтому калориферы делят на водяные, паровые, элект­рические и огневые. Отопительные электрокалориферы серии СФО с трубчатыми оребренными нагревателями предназначены для нагрева воздуха до температуры 50 °С в системах воздушного отопления, вентиляции, искусственного климата и в сушильных установках. Заданная температура выходящего воздуха поддержи­вается автоматически.

ОБОРУДОВАНИЕ ДЛЯ ВЕНТИЛЯЦИИ, ОТОПЛЕНИЯ, ОСВЕЩЕНИЯ

Автоматизированные комплекты оборудования «Климат» предназначены для вентиляции, отопления и увлажнения воздуха в животноводческих помещениях.

Комплект оборудования «Климат-3» состоит из двух приточ­ных вентиляционно-отопительных агрегатов 3 (рис. 2.14), систе­мы увлажнения воздуха, приточных воздуховодов 6 , комплекта вытяжных вентиляторов 7 , станции управления 1 с панелью дат­чиков 8.

Вентиляционно-отопительный агрегат 3 нагревает и подает aтмосферный воздух, при необходимости увлажняет.

Система увлажнения воздуха включает напорный бак 5 и элект­ромагнитный клапан, который автоматически регулирует степень и увлажнение воздуха. Подача горячей воды в калориферы регули­руется клапаном 2.

Комплекты приточно-вытяжных установок ПВУ-4М, ПВУ-ЬМ предназначены для поддержания температуры воздуха и его цир­куляции в заданных пределах в холодный и переходный периоды года.

Рис. 2.14. Оборудование «Климат-3»:

1 -станция управления; 2-регулирую­щий клапан; 3 - вентиляционно-отопительные агрегаты; 4 - электромагнитный клапан; 5 -напорный бак для воды; 6 - воздуховоды; 7 -вытяжной вентилятор; 8 - датчик

Электрокалориферные установки серии СФОЦ мощностью 5- 100 кВт применяют для нагрева воздуха в системах приточной вен­тиляции животноводческих помещений.

Тепловентиляторы типа ТВ-6 состоят из центробежного венти­лятора с двухскоростным электродвигателем, водяного калорифе­ра, жалюзийного блока и исполнительного механизма.

Огневые теплогенераторы ТГГ-1А. ТГ-Ф-1.5А, ТГ-Ф-2,5Г, ТГ-Ф-350 и топочные агрегаты ТАУ-0,75, ТАУ-1,5 применяют для поддержания оптимального микроклимата в животноводческих и других помещениях. Нагрев воздуха осуществляется продуктами сгорания жидкого топлива.

Вентиляционная установка с утилизацией теплоты УТ-Ф-12 предназначена для вентиляции и обогрева животноводческих по­мещений с использованием теплоты удаляемого воздуха. Воздуш­но-тепловые (воздушные завесы) позволяют поддерживать пара­метры микроклимата в зимнее время в помещении при открытии ворот большого сечения для пропуска транспорта или животных.

ОБОРУДОВАНИЕ ДЛЯ ОБОГРЕВА И ОБЛУЧЕНИЯ ЖИВОТНЫХ

При выращивании высокопродуктивного поголовья животных необходимо рассматривать их организмы и окружающую среду как единое целое, важнейшей составляющей которой является лу­чистая энергия. Применение в животноводстве ультрафиолетово­го облучения для ликвидации солнечного голодания организма, инфракрасного локального обогрева молодняка, а также светоре­гуляторов, обеспечивающих фотопериодический цикл развития животных, показало, что использование лучистой энергии дает возможность без больших материальных затрат существенно по­высить сохранность молодняка - основу воспроизводства поголо­вья скота. Ультрафиолетовое облучение положительно влияет на рост, развитие, обмен веществ и воспроизводительные функции сельскохозяйственных животных.

Благотворное влияние на животных оказывают инфракрасные лучи. Они проникают на 3...4 см в глубь тела и способствуют уси­лению тока крови в сосудах, благодаря чему улучшаются обмен­ные процессы, активизируются защитные силы организма, значи­тельно повышаются сохранность и прирост массы молодняка.

В качестве источников ультрафиолетового излучения в уста­новках наибольшее практическое значение имеют эритемные лю­минесцентные ртутные дуговые лампы типа ЛЭ; бактерицидные, ртутные дуговые лампы типа ДБ; дуговые ртутные трубчатые лампы высокого давления типа ДРТ.

Источниками ультрафиолетовых излучений служат также ртутно-кварцевые лампы типа ПРК, эритемные люминесцентные лампы типа ЭУВ и бактерицидные лампы типа БУВ.

Ртутно-кварцевая лампа ПРК представляет собой трубку из кварцевого стекла, заполненную аргоном и небольшим количе­ство ртути. Кварцевое стекло хорошо пропускает видимые и ультрафиолетовые лучи. Внутри кварцевой трубки у ее концов вмонтированы вольфрамовые электроды, на которые навита спираль, покрытая слоем оксида. Во время работы лампы между электрода­ми возникает дуговой разряд, являющийся источником ультрафи­олетового излучения.

Эритемные люминесцентные лампы типа ЭУВ имеют устройство, аналогичное люминесцентным лампам ЛД и ЛБ, но отлича­ются oт них составом люминофора и сортом стекла трубки.

Бактерицидные лампы типа БУВ устроены подобно люминес­центным. Применяют их для обеззараживания воздуха в родиль­ных отделениях КРС, свинарниках, птичниках, а также для обеззараживания стен, пола, потолка и ветеринарного инструмента.

Для инфракрасного обогрева и ультрафиолетового облучения молодняка применяют установку ИКУФ-1М, состоящую из шка­фа управления и сорока облучателей. Облучатель представляет со­бой жесткую коробчатую конструкцию, на обеих концах которой размещены инфракрасные лампы ИКЗК, а между ними - ультрафиолетовая эритемная лампа ЛЭ-15. Над лампой установ­лен отражатель. Пускорегулирующее устройство лампы смонтиро­вано сверху на облучателе и закрыто защитным кожухом.

Ключевые слова

ВОДОСНАБЖЕНИЕ / ЖИВОТНОЕ / КЛАПАН / КОНСТРУКЦИЯ / КОРОВНИК / МОДЕРНИЗАЦИЯ / ПОДДЕРЖАНИЕ ТЕМПЕРАТУРЫ / ПОДОГРЕВ / ПОИЛКА / СИСТЕМА ПОЕНИЯ / APPLYING WATER / ANIMAL / VALVE / CONSTRUCTION / BARN / MODERNIZATION / MAINTAINING TEMPERATURE / HEATING / DRINKING / WATER SYSTEM

Аннотация научной статьи по механике и машиностроению, автор научной работы - Оболенский Николай Васильевич, Шевелев Александр Владимирович

Описано общее состояние систем поения на фермах КРС. Обоснована важность правильного и своевременного поения животных водой, отвечающей зоотехническим требованиям. Произведена классификация применяемых поилок как отечественного, так и импортного производства, рассмотрены наиболее распространенные марки поилок с подробным описанием их устройства и принципа действия. Изучен ряд иностранных производителей оборудования для ферм КРС: ZIMMERMANN Stalltechnik (Германия), «LA BUVETTE» (Франция), «KERBL» (Германия), «Farma» (Дания), «SL» (Польша), «De Boer» (Голландия), Suevia (Германия), Arntjen (Германия), «De Laval» (Швеция), создающих конкуренцию отечественным товаропроизводителям. Рассматривались основные, применяемые на фермах КРС, системы поения , выявлены их преимущества и проблемные места, предложены способы устранения их недостатков. Изучены основные способы подогрева воды в поилках : размещением водонагревателей внутри поилки (локальный нагрев): централизованным нагревом воды с последующей её циркуляцией по всей системе поения ; применением системы «Тёплый родник». Предложен к реализации способ подогрева воды в поилках при помощи индукционного нагревателя. Подробно описана предлагаемая система обеспечения животных теплой водой, ее устройство и принцип действия, отмечены преимущества перед другими способами поддержания оптимальной температуры. Предложены основные направления модернизации систем поения, как-то: 1) применение теплоизоляционных материалов с целью сокращения потерь теплоты; 2) применение электронагревательных элементов с высоким классом электробезопасности в целях избежания возможности получения животными электрического удара; 3) внедрение передовых методов подогрева воды в поилках ; 4) поиск и реализация новых методов поддержания необходимого температурного режима воды в поилках с менее энергозатратными источниками тепловой энергии.

Похожие темы научных работ по механике и машиностроению, автор научной работы - Оболенский Николай Васильевич, Шевелев Александр Владимирович

  • Совершенствование конструкции групповой автоматической поилки для крупного рогатого скота

    2017 / Нигматов Ленар Гамирович, Медведев Валерий Евгеньевич, Бибарсов Владимир Юрьевич
  • Алгоритм управления процессом поения в коровниках

    2018 / B. В. Гордеев, C. В. Вторый
  • Теоретические предпосылки создания нового устройства водоподготовки в помещениях содержания КРС»

    2015 / Осокин Владимир Леонидович, Макарова Юлия Михайловна
  • Обоснование параметров устройства для поения коров подогретой водой

    2018 / Катков Алексей Анатольевич, Лукманов Рамиль Лутфуллович, Ковалев Павел Васильевич
  • Анализ организации водообеспечения коров летом при беспривязном содержании

    2019 / Гордеев В.В., Хазанов В.Е., Вторый С.В., Ильин Р.М.,
  • Параметры, влияющие на процесс нагрева воды в групповой автопоилке

    2013 / Таран Елена Александровна, Орищенко Ирина Викторовна
  • Конструктивные элементы групповой автопоилки, влияющие на скорость гравитационной циркуляции воды

    2011 / Таран Елена Александровна, Орищенко Ирина Викторовна
  • Изучение организации водоснабжения на комплексах по производству говядины

    2016 / Н. Н. Шматко, А. А. Музыка, С. А. Кирикович, А. А. Москалев
  • Разработка системы управления установкой для подготовки питьевой воды в животноводстве

    2017 / Долгих П.П., Кулаков Н.В., Макулькина Ю.Л.
  • Электробезопасность групповой автопоилки с термосифонной циркуляцией воды

    2015 / Орищенко Ирина Викторовна, Таран Елена Александровна

It is described the General condition of the drinking systems on farms cattle. It is substantiated the importance of proper and timely watering animals with water to meet the zoo technical requirements. The classification of drinkers used both domestic and imported, is considered the most common brand of drinkers with a detailed description of their device and principle of action. Studied a number of foreign manufacturers of equipment for cattle farms: ZIMMERMANN Stalltechnik (Germany), «LA BUVETTE» (France), «KERBL» (Germany), «Farma»(Denmark), «SL»(Poland), «DeBoer» (Holland), Suevia (Germany), Arntjen (Germany), «De Laval» (Sweden), creating competition with domestic producers. Addressed the main used on farms cattle watering systems, identified their strengths and problem areas, suggested ways of addressing their shortcomings. Studied the main ways of heating water in the drinking bowls: the placement of the heaters inside the troughs (local heating ): centralized water heating with the subsequent circulation throughout the drinking system; using the system «Warm spring». It is proposed implementation method of heating water in water troughs by means of the induction heater. Described in detail the proposed system provide the animals with warm water, its structure and principle of operation, advantages over other methods of maintaining optimum temperature. The basic directions of modernization of system of watering, such as: 1) applying insulating materials to reduce heat loss; 2) the use of electric heating elements with high class electrical safety to avoid the possibility of animals receiving electric shock; 3) the introduction of advanced methods of heating water in the drinkers; 4) the search and realization of new methods of maintaining the desired temperature of the water in the drinkers with less energy sources of thermal energy.

Текст научной работы на тему «Основные направления модернизации систем поения на фермах КРС»

УДК 628.1; 636.2

ОСНОВНЫЕ НАПРАВЛЕНИЯ МОДЕРНИЗАЦИИ СИСТЕМ ПОЕНИЯ НА ФЕРМАХ КРС

Оболенский Николай Васильевич, доктор технических наук, профессор

Шевелев Александр Владимирович, аспирант

Нижегородский государственный инженерно-экономический университет, Княгинино (Россия)

Аннотация. Описано общее состояние систем поения на фермах КРС. Обоснована важность правильного и своевременного поения животных водой, отвечающей зоотехническим требованиям. Произведена классификация применяемых поилок как отечественного, так и импортного производства, рассмотрены наиболее распространенные марки поилок с подробным описанием их устройства и принципа действия. Изучен ряд иностранных производителей оборудования для ферм КРС: ZIMMERMANN Stalltechnik (Германия), «LA BUVETTE» (Франция), «KERBL» (Германия), «Farma» (Дания), «SL» (Польша), «De Boer» (Голландия), Suevia (Германия), Arntjen (Германия), «De Laval» (Швеция), создающих конкуренцию отечественным товаропроизводителям. Рассматривались основные, применяемые на фермах КРС, системы поения, выявлены их преимущества и проблемные места, предложены способы устранения их недостатков. Изучены основные способы подогрева воды в поилках: размещением водонагревателей внутри поилки (локальный нагрев): централизованным нагревом воды с последующей её циркуляцией по всей системе поения; применением системы «Тёплый родник». Предложен к реализации способ подогрева воды в поилках при помощи индукционного нагревателя. Подробно описана предлагаемая система обеспечения животных теплой водой, ее устройство и принцип действия, отмечены преимущества перед другими способами поддержания оптимальной температуры. Предложены основные направления модернизации систем поения, как-то: 1) применение теплоизоляционных материалов с целью сокращения потерь теплоты; 2) применение электронагревательных элементов с высоким классом электробезопасности в целях избежания возможности получения животными электрического удара; 3) внедрение передовых методов подогрева воды в поилках; 4) поиск и реализация новых методов поддержания необходимого температурного режима воды в поилках с менее энергозатратными источниками тепловой энергии.

Ключевые слова: водоснабжение, животное, клапан, конструкция, коровник, модернизация, поддержание температуры, подогрев, поилка, система поения.

THE MAIN DIRECTIONS OF THE MODERNIZATION OF THE WATER SYSTEM ON THE CATTLE FARM

Obolenskiy Nikolay Vasilievich, the doctor of technical sciences, the professor

Nizhniy Novgorod state engineering-economic university, Knyaginino (Russia) Shevelev Aleksandr Vladimirovich, the post-graduate student

Nizhniy Novgorod state engineering-economic university, Knyaginino (Russia)

Annotation. It is described the General condition of the drinking systems on farms cattle. It is substantiated the importance of proper and timely watering animals with water to meet the zoo technical requirements. The classification of drinkers used both domestic and imported, is considered the most common brand of drinkers with a detailed description of their device and principle of action. Studied a number of foreign manufacturers of equipment for cattle farms: ZIMMERMANN Stalltechnik (Germany), «LA BUVETTE» (France), «KERBL» (Germany), «Far-ma»(Denmark), «SL»(Poland), «DeBoer» (Holland), Suevia (Germany), Arntjen (Germany), «De Laval» (Sweden), creating competition with domestic producers. Addressed the main used on farms cattle watering systems, identified their strengths and problem areas, suggested ways of addressing their shortcomings. Studied the main ways of heating water in the drinking bowls: the placement of the heaters inside the troughs (local heating): centralized water heating with the subsequent circulation throughout the drinking system; using the system «Warm spring». It is proposed implementation method of heating water in water troughs by means of the induction heater. Described in detail the proposed system provide the animals with warm water, its structure and principle of operation, advantages over other methods of maintaining optimum temperature. The basic directions of modernization of system of watering, such as: 1) applying insulating materials to reduce heat loss; 2) the use of electric heating elements with high class electrical safety to avoid the possibility of animals receiving electric shock; 3) the introduction of advanced methods of heating

water in the drinkers; 4) the search and realization of new methods of maintaining the desired temperature of the water in the drinkers with less energy sources of thermal energy.

Keywords: applying water, animal, valve, construction, barn, modernization, maintaining temperature, heating, drinking, water system.

Введение

В животноводстве, как и во многих других отраслях сельского хозяйства, огромную роль играет водоснабжение. Вода для животных жизненно необходима, т. к. именно с ее участием в их организме протекают все физиологические процессы. Особую потребность в воде испытывают молочные коровы, поскольку для производства одного литра молока требуется в пять раз больше жидкости. Из этого расчета можно сделать вывод, что на молочных фермах на одну корову в среднем необходимо не менее 80 литров воды в день, в некоторых хозяйствах в летний период эта цифра может достигать 130 литров. Именно поэтому правильное поение является таким же обязательным условием, как и кормление, т. к. несвоевременное и недостаточное поение, а также неправильный подход к этому процессу может отрицательно сказаться на удое .

Оптимальной температурой воды для поения КРС считается +8...+12 °С. Более теплая вода не оказывает на животного освежающего воздействия, а при употреблении воды с температурой свыше 20 °С их организм становится восприимчивие к простудным заболеваниям. Поение холодной водой вызывает у животного переохлаждение организма, появление простудных заболеваний, нарушение пищеварения, а в редких случаях приводит к абортам у беременных маток. Установлено, что перебои в поставке воды животным, а также несоблюдение зоотехнических требований, предъявляемых к воде, способно снизить производительность коров на 10-15 % и увеличить расход кормов на 3-5 % .

В связи с вышесказанным наиважнейшей задачей становится усовершенствование процессов подготовки воды и модернизация имеющихся систем водообеспечения животных. Решением этой проблемы занимались Шупик М. В., Хазанов Е. Е., Мамедов Э. С., Поцелуев А. А. и другие исследователи .

Материалы и методы

Одним из перспективных направлений модернизации систем водоснабжения может стать изготовление автопоилок с подогревом, что обеспечит постоянную оптимальную температуру воды в холодные периоды .

Все используемые на фермах поилки подразделяются на индивидуальные (рис. 1, а) и групповые (рис. 1, б и в). Индивидуальные используются на фермах КРС с привязным содержанием животных в отдельных станках, групповые - при беспривязном содержании. При этом групповые автопоилки могут быть стационарными (применяются на фермах) и передвижными (на пастбищах и в лаге-р ях, удаленных от источника водоснабжения). По конструкции автопоилки бывают клапанные, вакуумные и бесклапанные, работающие по принципу сообщающихся сосудов. В свою очередь, клапанные подразделяются на педальные и поплавковые. Все применяемые групповые автопоилки также можно разделить на 2 типа: обладающие индивидуальным встроенным регулятором уровня и имеющие один регулятор уровня на несколько поилок, к которым можно отнести «уровневые» поилки, используемые для беспривязного содержания КРС .

Рисунок 1 - а) индивидуальная поилка: 1 - корпус; 2 - клапан; 3 - нажимная педаль; 4 - поильная чаша; 5 - резиновый амортизатор; б) групповая передвижная автопоилка: 6 - цистерна; 7 - вакуумрегулятор;

8 - поильные корыта; в) групповая стационарная поилка

В настоящее время поддержание необходимого оптимального значения температуры в системах автопоения осуществляется в основном нагревательными элементами, расположенными в резервуаре, или созданием постоянного протока в питьевом

корыте. В первом случае могут использоваться автоматические водонагревательные термосы типа ВЭТ с объемом резервуара от 200 до 800 литров в зависимости от поголовья КРС. При этом присутствует существенный недостаток - нагретая вода,

поступившая в поилку, со временем остывает, а при сильных заморозках может образоваться обледенение с дальнейшим выходом оборудования из строя. Во втором случае необходима постоянная регулировка подачи воды, а непрерывная ее циркуляция влечет за собой значительный перерасход электроэнергии. В данном случае могут использоваться электронагреватели проточного типа ЭВП-2 или ЭВАН-100, в которых температура воды поддерживается автоматически.

Обсуждение

Для поения крупного рогатого скота используют автопоилки: индивидуальные ПА-1, ПА-1М, ПАВ-9М, АП-1А и групповые АГК-12, АГК-12А, АГК-12Б. Индивидуальная поилка (рис 1, а) состоит из чаши, клапана и нажимной педали, предназначенной для открывания и закрывания клапана. Групповые автопоилки (рис. 1, б и в) представляют собой металлические, реже пластмассовые, корыта с подведенными к ним трубами водоснабжения. Устанавливают и те и другие автопоилки на высоте не более 0,6 м от пола. Такие же автопоилки могут применяться на лошадиных фермах .

По причине развития молочной промышленности, а также строительства новых ферм в рамках национальных проектов возникла резкая необходимость в качественном оборудовании для содержания КРС и внедрении прогрессивных технологий производства молока. Существует целый ряд иностранных производителей оборудования для молочных ферм: ZIMMERMANN Stalltechnik (Германия), «LA BUVETTE» «Франция», «KERBL» (Германия), «Farma» (Дания), «SL» (Польша), «De Boer» (Голландия), Suevia (Германия), Amtjen (Германия), «De

Laval» (Швеция), создающих конкуренцию отечественным товаропроизводителям. Именно поэтому на сегодняшний день актуальной задачей становится разработка и внедрение в производство в России современных автоматических энергосберегающих систем поения, отвечающих зоотехническим требованиям.

Главным зоотехническим требованием является обеспечение животных водой с оптимальной для них температурой, осуществление которого весьма сложная задача в зимнее время при критических отрицательных температурах, особенно в открытых холодных помещениях. Опыт холодных зим 2002, 2006, 2011 и 2012 гг. показал острую необходимость в создании надёжных высокоэффективных систем автоматического подогрева воды для организации процесса поения животных при длительных заморозках.

Одним из способов осуществления подогрева воды в поилках является использование теплоты земли. Такой способ подогрева воды реализован в системе «Тёплый родник» в автопоилках фирмы «Suevia» в моделях 630, 640, 850 и 860 .

Принцип действия системы «Тёплый родник» заключается в следующем (рис. 2): вода к поилке 1 поступает через подводящую трубу, проходящую через заполненную водой шахту 4 (полая бетонная труба), соединённую с водопроводом 5, проложенным в грунте на глубине ниже промерзания (не менее 1,8 метра). Таким образом, вода, поступающая в поилку, нагревается за счет конвективного теплообмена, происходящего между верхними и нижними слоями грунта.

Рисунок 2 - Поилка с системой «Тёплый родник»: 1 - поилка; 2 - бетонный пол; 3 - грунт, земля;

4 - шахта (бетонная труба); 5 - водопровод

Сама поилка оснащена теплоизоляционным материалом, предохраняющим от дополнительных теплопотерь. Как правило, поилки с таким способом подогрева применяются в неотапливаемых коровниках в регионах с «мягкими» зимами. Вода в таких поилках, как заявляет фирма-производитель, не опускается ниже +6 °С, а в летний период не поднимается выше +15 °С. Существенный недостаток поилок с системой «Тёплый родник» - большие капиталовложения на внедрение этой системы в уже построенные фермы КРС. Главное преимущество -отсутствие затрат на электроэнергию, поскольку электронагрев полностью исключён.

Наиболее распространённый и перспективный способ подогрева воды в автопоилках - применение электронагрева путём размещения водонагревателей внутри поилки (локальный нагрев), либо централизованного нагрева воды с обеспечением по-

следующей её циркуляцией по всей системе поения .

Способ локального нагрева реализован в стационарных групповых автопоилках типа АГК-4, АГК-4А, АГК-4Б (рис. 3). Используют их на фермах КРС с беспривязным содержанием. Устройство таких автопоилок следующее: в теплоизоляционный корпус вмонтирована поильная чаша на 4 места, в которой установлен клапанно-поплавковый механизм, служащий для регулировки уровня воды. Обогрев осуществляется тэнами, вмонтированными в подчашечном пространстве. Автоматическое поддержание температуры в диапазоне 5.14 °С осуществляется посредством терморегулятора, установленного в поильной чаше. Работает такая автопоилка от переменного тока с и 220 В. Рассчитана она на 100 голов КРС .

Рисунок 3 - Автопоилка АГК-4А: 1 - корпус; 2 - поильная чаша; 3 - крышка; 4 - клапан; 5 - поплавковый механизм; 6 - разделитель; 7 - терморегулятор; 8 - блок заземления; 9 - электронагревательный элемент (ТЭН); 10 - теплоизоляция; 11 - водоподводящая труба;

12 - утеплительная труба

Автопоилки с локальным обогревом обладают двумя существенными недостатками: 1) повышенная электроопасность за счет возможного возникновения повышенных токов утечки (снижения электрического сопротивления изоляции тэнов) и, как следствие, получение животным электроудара; 2) возможность промерзания трубы подводящего водопровода при низких температурах. Повышение токов утечки устраняется применением высококачественных тэнов с высоким классом электробезопасности. Для предотвращения промерзания подводящих труб используют термошнуры невысокой (20/24 Ватт) мощности .

Более распространёнными для климата России считаются системы поения с циркуляцией воды. При этом возможны три варианта исполнения систем такого рода:

1) нагретая вода циркулирует по системе и поступает в поилки чашечного типа (8иеу1а 303/300);

2) нагретая вода циркулирует при помощи насоса по теплообменникам, расположенным в емкостных поилках, при этом в саму поилку вода поступает при изменении уровня, т. е. при потреблении животными. Таким способом устроена система поения овец КВО-8А/5, КВО-3/12, КВО-8А/24 и КВ0-8А/30. Недостаток - большая энергоёмкость;

3) подогретый теплоноситель циркулирует по трубопроводам системы и проходит теплообменник не попадая в саму поилку. В этом варианте системы к поилке подведены три трубопровода: прямой, обратный и подпитывающий.

В третьем варианте в роли теплоносителя может применяться как вода, так и незамерзающая жидкость, при этом подогрев может осуществляться от системы отопления.

Главный недостаток систем с циркуляцией воды, в сравнении с локальным нагревом, - большие теплопотери. Минимизировать эти потери можно применением теплоизоляционных материа-

лов, что успешно реализуется в автопоилках иностранного производства. Для снижения теплопотерь в трубопроводах можно использовать трубчатые теплозащитные покрытия или термошнуры небольшой мощности .

В последнее время на фермах КРС начали использовать наиболее оптимальный способ подогрева воды - комбинированный (рис. 4). При этом способе подогретая в водонагревателе 8 вода посредством циркуляционного насоса 7 подается в поильную чашу 1, в которой остаётся до употребления, автоматически подогреваясь тэном 6, вмонтированным под чашей. Для поддержания постоянного уровня воды в поильной чаше установлен поплавковый клапан 3, срабатывающий при употреблении воды животными.

их преимущества и недостатки, приходим к выводу, что системы автопоения животных нуждаются в модернизации с целью оптимизации энергозатрат. Одним из направлений модернизации может стать применение ранее не используемых методов нагрева жидкостей.

Одним из вариантов модернизации может стать автопоилка с обогревателем индукционного действия (рис. 5). В такой поилке подогрев воды осуществляется размещением подводящей трубы в магнитном поле катушки.

Рисунок 4 - Групповая автопоилка с подогревом: 1 - поильная чаша; 2 - рама; 3 - клапан поплавковый; 4 - муфта; 5 - стопор; 6 - ТЭН; 7 - циркуляционный насос; 8 - водонагреватель

Результаты

Рассмотрев используемые в настоящее время на фермах КРС модификации автопоилок, изучив существующие методы подогрева воды в поилках,

Рисунок 5 - Принцип действия индукционного нагрева

Принцип действия индукционного нагревателя (рис. 5): электромагнитная катушка, подключенная в сеть, создаёт переменное магнитное поле. При этом во вторичной обмотке, которой в нашем случае являтся подводящая труба, создаются наводящие токи (токи Фуко), разогревающие металл. Поступающая холодная вода, проходя по такой трубе, разогревается и разогревает воду. Преимущество такого подогрева перед тэновым - более высокая электробезопасность и эффективность (КПД до 0,98).

Рисунок 6 - Система поения с индукционным подогревателем: 1 - входная труба; 2 - клапанно-поплавковый механизм; 3 - термодатчик; 4 - шкаф управления; 5 - обратная магистраль водопровода; 6 - циркуляционный насос; 7 - индукционный подогреватель

Принцип действия системы с индукционным подогревателем состоит в следующем: вода заполняет систему через входной патрубок 1. В поильных

корытах установлены клапанно-поплавковый механизм 2 и термодатчик 3. Циркуляция воды в системе обеспечивается насосом 6, установленным на об-

ратной магистрали водопровода. При понижении температуры воды срабатывает термодатчик 3, подающий сигнал в шкаф управления 4, в котором распложены устройства защиты и управления индукционным подогревателем 7.

Для оптимизации расходов электроэнергии необходимо учесть, что если через входную трубу подается уже нагретая вода (от бойлера или водо-нагревательного термоса ВЭТ), то для поддержания её заданной температуры будет достаточно использовать маломощные индукционные нагреватели на 3.5 кВт, работающие от сети 220 В: ВИН-3/5; 8ЛУ-2,5/3; ПИН-3; ЭНАТС-4,7. Если же вода подается холодная, то для нагрева её до оптимальной температуры понадобятся водонагреватели мощностью 6.7 кВт.

Заключение

На фермах КРС для поения применяется отечественное оборудование, нуждающееся в модернизации с целью снижения энергопотребления и повышения электробезопасности. Основным направлением модернизации систем поения является поиск и реализация новых методов поддержания необходимого температурного режима воды в поилках с менее энергозатратными источниками тепловой энергии.

СПИСОК ЛИТЕРАТУРЫ

1. Кавтарашвили А., Шоль В. Качество воды - составляющая успеха // Животноводство России. 2014. № 8. С. 29-31.

2. Вторый В. Ф., Вторый С. В., Зайцев И. С. Мониторинг водопотребления - путь к снижению экологического ущерба при производстве молока. ГНУ Северо-Западный научно-исследовательский институт механизации и электрификации сельского хозяйства Россельхозакадемии. Санкт-Петербург: 2011. С. 104-109.

3. Сёмин А. Комфортная среда обитания коровы - залог хорошего здоровья и продуктивного долголетия // Молочная промышленность. 2013. № 7. С. 20.

4. Хазанов Е. Е., Гордеев В. В., Хазанов В. Е. Модернизация молочных ферм. СПб. : ГНУ СЗНИИМЭСХ Россельхозакадемии, 2008. 380 с.

5. Мамедов Э. С. Разработка методики оптимизации микроклимата в животноводческих и птицеводческих помещениях // Сборник известий. НАНА Гянджинский региональный научный центр. Гянджа: 2012. № 493. С. 65-69.

6. Мамедов Э. С. Тепловлажностный баланс животноводческих помещений // Материалы общереспубликанской конференции. Гянджа: АГАУ, 2013. С.138-140.

7. Хазанов Е. Е., Ревякин Е. Л., Хазанов В. Е., Гордеев В. В. Рекомендации по модернизации и

техническому перевооружению молочных ферм. Москва: ФГНУ«Росинформагротех», 2007. 128 с.

8. Шупик М. В. Скрылев Н. И. Кормление крупного рогатого скота: учебное пособие. Горки: Белорусская государственная сельскохозяйственная академия, 2006. 88 с.

9. Поцелуев А. А. Ресурсосберегающие системы водообеспечения технологических процессов по обслуживанию крупного рогатого скота: диссертация на соискание ученой степени доктора технических наук. Зерноград, 2011. 441 с.

10. Суюнчалиев Р. С., Сафронова М. П. Система поения животных подогретой водой. Патент на изобретение RUS 2242120 16.06.2003.

11. Разведение с основами частной зоотехники: учебник для вузов / Под общ. ред. проф. Н. М. Костомахина. Санкт-Петербург: Лань, 2006. 488 с.

12. Таран Е. А., Минина Е. С. Классификация групповых автопоилок с термосифонной циркуляцией воды // Вестник аграрной науки Дона. 2013. № 4 (24) С. 14-17.

13. Таран Е. А., Орищенко И. В. Параметры, влияющие на процесс нагрева воды в групповой автопоилке // Вестник аграрной науки Дона. 2013. № 4 (24) С. 18-21.

14. Андреева Е. В. Инженерно-техническое обеспечение АПК // Реферативный журнал. 2013. № 2. С. 563.

15. Тихомиров А. В. Энергоэффективные технические средства и оборудование в системах энергообеспечения объектов животноводства // Всероссийский научно-исследовательский институт механизации животноводства РАСХН, 2011. С. 43-49.

16. Гордиевских М. Л. Коровник с выдвижной доильной установкой // Достижения науки и техники АПК. 2006. № 3. С. 42-43.

17. Скоркин В. К. Современные требования к управлению технологическими процессами на молочных фермах с целью повышения качества продукции // Вестник ВНИИМЖ. 2013. № 3. С. 4-13.

18. Русское поле. Техника по производителю [Электронный ресурс]. Режим доступа: http://www.rusfield.ru/technics/firms-zim-krs.shtml

19. Цой Ю. А., Суюнчалиев Р. С., Мансуров А. А. Направления совершенствования энергосберегающих систем поения крупного рогатого скота при беспривязном содержании // Труды международной научно-технической конференции «Энергообеспечение и энергосбережение в сельском хозяйстве». 2006. Т. 3. С. 132-136.

20. Бибарсов В. Ю., Фомин М. Б., Рахим-жанова И. А., Старожуков A. M., Нигматов Л. Г. Разработка и исследование системы бесперебойного автоматического группового поения животных с использованием ВЭУ (автопоилка с подогревом во-

ды от ветроагрегата) // Инновац. электротехнологии и электрооборудование - предприятиям АПК. Ижев. гос. с.-х. акад. Ижевск, 2012. С. 98-103.

21. Коршунов Б. П., Марьяхин Ф., Учеват-кин А. И., Коршунов А. Б., Иванов В. В. Энергосберегающая комбинированная теплохолодильная система для молочных ферм // Инновации в сельском хозяйстве. 2016. № 4 (19). С. 106-110.

22. Коняев Н. В., Назаренко Ю. В. Модернизированная система поения животных // Электрика. 2015. № 9. С. 37-40.

23. Осокин В. Л., Макарова Ю. М. Теоретические предпосылки создания нового устройства водоподготовки в помещениях содержания КРС // Вестник НГИЭИ. 2015. № 4 (47) С. 72-76.

1. Kavtarashvili A., SHol" V. Kachestvo vodi -sostavlyayuschaya uspeha (The water quality component of success), Zgivotnovodstvo Rossii. 2014. No. 8. pp.29-31.

2. Vtoriy V. F., Vtoriy S. V., Zaytsev I. S. Monitoring vodopotrebleniya - put" k snizgeniyu ekologicheskogo uscherba pri proizvodstve moloka (Monitoring of water consumption - reduce environmental damage in the production of milk), GNU Severo-Zapadniy nauchno-issledovatel "skiy institut me-hanizatsii i elektrifikatsii sel"skogo hozyaystva Ros-sel"hozakademii. Sankt-Peterburg: 2011. pp. 104-109.

3. Syomin A. Komfortnaya sreda obitaniya ko-rovi - zalog horoshego zdorov"ya i produktivnogo dol-goletiya (Comfortable living environment cows - the key to good health and productive longevity), Mo-lochnayapromishlennost". 2013. No. 7. pp. 20.

4. Hazanov E. E., Gordeev V. V., Hazanov V. E. Modernizatsiya molochnih ferm (Modernization of dairy farms). SPb. : GNU SZNIIMESH Ros-sel"hozakademii, 2008. 380 p.

5. Mamedov E. S. Razrabotka metodiki optimi-zatsii mikroklimata v zgivotnovodcheskih i ptitsevodcheskih pomescheniyah (Development of methods of optimization of microclimate in livestock and poultry premises), Sbornik izvestiy. NANA Gyandzginskiy regional"niy nauchniy tsentr. Gyandzga: 2012. No. 493. pp. 65-69.

6. Mamedov E. S. Teplovlazgnostniy balans zgivotnovodcheskih pomescheniy (Heat and humidity balance of livestock buildings), Materiali obscherespu-blikanskoy konferentsii. Gyandzga: AGAU, 2013. pp. 138-140.

7. Hazanov E. E., Revyakin E. L., Hazanov V. E., Gordeev V. V. Rekomendatsii po moderni-zatsii i tehnicheskomu perevooruzgeniyu molochnih ferm (Recommendations on modernization and technical re-equipment of dairy farms). Moskva: FGNU«Rosinformagroteh», 2007. 128 p.

8. SHupik M. V. Skrilev N. I. Kormlenie krupnogo rogatogo skota (Feeding cattle) : uchebnoe posobie. Gorki: Belorusskaya gosudarstvennaya sel"skohozyaystvennaya akademiya, 2006. 88 p.

9. Potseluev A. A. Resursosberegayuschie sis-temi vodoobespecheniya tehnologicheskih protsessov po obsluzgivaniyu krupnogo rogatogo skota (Resource-saving water systems of technological processes for maintenance of cattle) : dissertatsiya na soiskanie uchenoy stepeni doktora tehnicheskih nauk. Zerno-grad, 2011. 441 p.

10. Suyunchaliev R. S., Safronova M. P. Sistema poeniya zgivotnih podogretoy vodoy (The watering system of the animal heated water). Patent na izobreten-ie RUS 2242120 16.06.2003.

11. Razvedenie s osnovami chastnoy zootehniki (Breeding with the basics of private livestock) : ucheb-nik dlya vuzov / Pod obsch. red. prof. N. M. Kostoma-hina. Sankt-Peterburg: Lan", 2006. 488 p.

12. Taran E. A., Minina E. S. Klassifikatsiya gruppovih avtopoilok s termosifonnoy tsirkulyatsiey vodi (Classification autopilot group with thermosyphon circulation of water), Vestnik agrarnoy nauki Dona. 2013. No. 4 (24) pp. 14-17.

13. Taran E. A., Orischenko I. V. Parametri, vliyayuschie na protsess nagreva vodi v gruppovoy avtopoilke (The parameters that affect the process of heating the water in a group avtopoilki), Vestnik agrar-noy nauki Dona. 2013. No. 4 (24) pp. 18-21.

14. Andreeva E. V. Inzgenerno-tehnicheskoe obespechenie APK (Engineering APK), Referativniy zgurnal. 2013. No. 2. pp. 563.

15. Tihomirov A. V. Energoeffektivnie tehnich-eskie sredstva i oborudovanie v sistemah energoo-bespecheniya ob""ektov zgivotnovodstva (Energy efficient hardware and equipment in power supply systems of objects of animal husbandry), Vserossiyskiy nauch-no-issledovatel"skiy institut mehanizatsii zgivotnovodstva RASHN. 2011. pp. 43-49,

16. Gordievskih M. L. Korovnik s vidvizgnoy doil"noy ustanovkoy (Barn with retractable milking installation), Dostizgeniya nauki i tehniki APK. 2006. No. 3. pp. 42-43.

17. Skorkin V. K. Sovremennie trebovaniya k upravleniyu tehnologicheskimi protsessami na mo-lochnih fermah s tsel"yu povisheniya kachestva produk-tsii (Modern requirements to the management of technological processes on dairy farms to improve product quality), Vestnik VNIIMZG. 2013. No. 3. pp.4-13.

1 8. Russkoe pole. Tehnika po proizvoditelyu . Rezgim dostupa: http://www.rusfield.ru/technics/firms-zim-krs.shtml

19. TSoy YU. A., Suyunchaliev R. S., Mansurov A. A. Napravleniya sovershenstvovaniya energosberegayuschih sistem poeniya krupnogo rogato-

go skota pri besprivyaznom soderzganii (Directions of perfection of energy-saving systems for watering cattle in loose housing), Trudi mezgdunarodnoy nauchno-tehnicheskoy konferentsii «Energoobespechenie i ener-gosberezgenie v sel"skom hozyaystve». 2006. T. 3. pp.132-136.

20. Bibarsov V. YU., Fomin M. B., Rahim-zganova I. A., Starozgukov A. M., Nigmatov L. G. Raz-rabotka i issledovanie sistemi bespereboynogo avto-maticheskogo gruppovogo poeniya zgivotnih s ispol"zovaniem VEU (avtopoilka s podogrevom vodi ot vetroagregata) (Development and research of the uninterrupted group automatic watering animals using wind turbines (autodrinking heated water from turbine)), In-novats. elektrotehnologii i elektrooborudovanie -predpriyatiyam APK. Izgev. gos. s.-h. akad. Izgevsk, 2012.pp. 98-103.

21. Korshunov B. P., Mar"yahin F., Uchevatkin A. I., Korshunov A. B., Ivanov V. V. Energosberegay-uschaya kombinirovannaya teploholodil"naya sistema dlya molochnih ferm (Energy-saving combined heat-refrigeration system for dairy farms), Innovatsii v sel"skom hozyaystve. 2016. No. 4 (19). pp. 106-110.

22. Konyaev N. V., Nazarenko YU. V. Modern-izirovannaya sistema poeniya zgivotnih (Upgraded the watering system of animals), Elektrika. 2015. No. 9. pp. 37-40.

23. Osokin V. L., Makarova YU. M. Teoretich-eskie predposilki sozdaniya novogo ustroystva vodopodgotovki v pomescheniyah soderzganiya KRS (Theoretical background the creation of a new water treatment device on the premises of the cattle), Vestnik NGIEI. 2015. № 4 (47) pp. 72-76.

Новое на сайте

>

Самое популярное